A one-dimensional model for ion transport in a flame with two absorbing surfaces

This paper presents numerical and asymptotic analytical solutions for the current-voltage characteristic of a flame using a one-dimensional ion transport model with boundary conditions that include detailed treatment of sheath formation. Non-dimensional conservation equations are presented for the f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combustion theory and modelling 2021-01, Vol.25 (1), p.22-43
Hauptverfasser: Martin, Christopher, Untaroiu, Alexandrina, Xu, Kemu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 43
container_issue 1
container_start_page 22
container_title Combustion theory and modelling
container_volume 25
creator Martin, Christopher
Untaroiu, Alexandrina
Xu, Kemu
description This paper presents numerical and asymptotic analytical solutions for the current-voltage characteristic of a flame using a one-dimensional ion transport model with boundary conditions that include detailed treatment of sheath formation. Non-dimensional conservation equations are presented for the free electron, the hydronium ion, and the electrical potential in a one-dimensional flow field with uniform velocity, electrical mobility, and diffusivity, but allowances are made for non-equilibrium electron temperature. In this study, the size and location of the ion formation region and the electric Reynolds numbers are changed, and their impacts are studied. The model predicts the formation of charged sheaths at both ends of the domain, which are responsible for saturation events that are reliably observed in experiments. A new saturation regime can be made to appear in the model, but its absence from the experiment is argued to have implications on transport near absorbing surfaces in the experiment. For example, the Reynolds numbers at which the current-voltage characteristic converges to the shape and magnitude observed in the experiment implies that the sheaths form in the low-velocity region in the real flow that reduces the apparent Reynolds number.
doi_str_mv 10.1080/13647830.2020.1826581
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_13647830_2020_1826581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2485449576</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-68572856dbfb6328b99e8091aa5829e49b44fae3fcbd308babe580a8a22eb0163</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKuPIARcT811JrOzFG9Q0IWuw8lMoikzk5pMKX17M7RuXZ0L3384fAjdUrKgRJF7yktRKU4WjLC8UqyUip6hGa0ELbiU9XnuM1NM0CW6SmlDCGEVEzP0vsRhsEXrezskHwbocB9a22EXIs4zHiMMaRviiP2AAbsOeov3fvzG4z5gMClE44cvnHbRQWPTNbpw0CV7c6pz9Pn0-LF6KdZvz6-r5bpoOFdjUSpZMSXL1jhTcqZMXVtFagogFautqI0QDix3jWk5UQaMlYqAAsasIbTkc3R3vLuN4Wdn06g3YRfz_0kzoaQQtawmSh6pJoaUonV6G30P8aAp0ZM8_SdPT_L0SV7OPRxzfsgietiH2LV6hEMXostGGp80___EL6_Sdb4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2485449576</pqid></control><display><type>article</type><title>A one-dimensional model for ion transport in a flame with two absorbing surfaces</title><source>Taylor &amp; Francis:Master (3349 titles)</source><creator>Martin, Christopher ; Untaroiu, Alexandrina ; Xu, Kemu</creator><creatorcontrib>Martin, Christopher ; Untaroiu, Alexandrina ; Xu, Kemu</creatorcontrib><description>This paper presents numerical and asymptotic analytical solutions for the current-voltage characteristic of a flame using a one-dimensional ion transport model with boundary conditions that include detailed treatment of sheath formation. Non-dimensional conservation equations are presented for the free electron, the hydronium ion, and the electrical potential in a one-dimensional flow field with uniform velocity, electrical mobility, and diffusivity, but allowances are made for non-equilibrium electron temperature. In this study, the size and location of the ion formation region and the electric Reynolds numbers are changed, and their impacts are studied. The model predicts the formation of charged sheaths at both ends of the domain, which are responsible for saturation events that are reliably observed in experiments. A new saturation regime can be made to appear in the model, but its absence from the experiment is argued to have implications on transport near absorbing surfaces in the experiment. For example, the Reynolds numbers at which the current-voltage characteristic converges to the shape and magnitude observed in the experiment implies that the sheaths form in the low-velocity region in the real flow that reduces the apparent Reynolds number.</description><identifier>ISSN: 1364-7830</identifier><identifier>EISSN: 1741-3559</identifier><identifier>DOI: 10.1080/13647830.2020.1826581</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Boundary conditions ; Computational fluid dynamics ; Conservation equations ; Current voltage characteristics ; Electron energy ; Exact solutions ; Experiments ; Fluid flow ; Free electrons ; Hydronium ions ; Ion transport ; One dimensional flow ; One dimensional models ; oxyfuel ; Plasma ; Reynolds number ; Saturation ; sensing ; sheath ; Sheaths</subject><ispartof>Combustion theory and modelling, 2021-01, Vol.25 (1), p.22-43</ispartof><rights>2020 Informa UK Limited, trading as Taylor &amp; Francis Group 2020</rights><rights>2020 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-68572856dbfb6328b99e8091aa5829e49b44fae3fcbd308babe580a8a22eb0163</citedby><cites>FETCH-LOGICAL-c338t-68572856dbfb6328b99e8091aa5829e49b44fae3fcbd308babe580a8a22eb0163</cites><orcidid>0000-0002-7129-9367</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/13647830.2020.1826581$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/13647830.2020.1826581$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,60436</link.rule.ids></links><search><creatorcontrib>Martin, Christopher</creatorcontrib><creatorcontrib>Untaroiu, Alexandrina</creatorcontrib><creatorcontrib>Xu, Kemu</creatorcontrib><title>A one-dimensional model for ion transport in a flame with two absorbing surfaces</title><title>Combustion theory and modelling</title><description>This paper presents numerical and asymptotic analytical solutions for the current-voltage characteristic of a flame using a one-dimensional ion transport model with boundary conditions that include detailed treatment of sheath formation. Non-dimensional conservation equations are presented for the free electron, the hydronium ion, and the electrical potential in a one-dimensional flow field with uniform velocity, electrical mobility, and diffusivity, but allowances are made for non-equilibrium electron temperature. In this study, the size and location of the ion formation region and the electric Reynolds numbers are changed, and their impacts are studied. The model predicts the formation of charged sheaths at both ends of the domain, which are responsible for saturation events that are reliably observed in experiments. A new saturation regime can be made to appear in the model, but its absence from the experiment is argued to have implications on transport near absorbing surfaces in the experiment. For example, the Reynolds numbers at which the current-voltage characteristic converges to the shape and magnitude observed in the experiment implies that the sheaths form in the low-velocity region in the real flow that reduces the apparent Reynolds number.</description><subject>Boundary conditions</subject><subject>Computational fluid dynamics</subject><subject>Conservation equations</subject><subject>Current voltage characteristics</subject><subject>Electron energy</subject><subject>Exact solutions</subject><subject>Experiments</subject><subject>Fluid flow</subject><subject>Free electrons</subject><subject>Hydronium ions</subject><subject>Ion transport</subject><subject>One dimensional flow</subject><subject>One dimensional models</subject><subject>oxyfuel</subject><subject>Plasma</subject><subject>Reynolds number</subject><subject>Saturation</subject><subject>sensing</subject><subject>sheath</subject><subject>Sheaths</subject><issn>1364-7830</issn><issn>1741-3559</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKuPIARcT811JrOzFG9Q0IWuw8lMoikzk5pMKX17M7RuXZ0L3384fAjdUrKgRJF7yktRKU4WjLC8UqyUip6hGa0ELbiU9XnuM1NM0CW6SmlDCGEVEzP0vsRhsEXrezskHwbocB9a22EXIs4zHiMMaRviiP2AAbsOeov3fvzG4z5gMClE44cvnHbRQWPTNbpw0CV7c6pz9Pn0-LF6KdZvz6-r5bpoOFdjUSpZMSXL1jhTcqZMXVtFagogFautqI0QDix3jWk5UQaMlYqAAsasIbTkc3R3vLuN4Wdn06g3YRfz_0kzoaQQtawmSh6pJoaUonV6G30P8aAp0ZM8_SdPT_L0SV7OPRxzfsgietiH2LV6hEMXostGGp80___EL6_Sdb4</recordid><startdate>20210102</startdate><enddate>20210102</enddate><creator>Martin, Christopher</creator><creator>Untaroiu, Alexandrina</creator><creator>Xu, Kemu</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7129-9367</orcidid></search><sort><creationdate>20210102</creationdate><title>A one-dimensional model for ion transport in a flame with two absorbing surfaces</title><author>Martin, Christopher ; Untaroiu, Alexandrina ; Xu, Kemu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-68572856dbfb6328b99e8091aa5829e49b44fae3fcbd308babe580a8a22eb0163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boundary conditions</topic><topic>Computational fluid dynamics</topic><topic>Conservation equations</topic><topic>Current voltage characteristics</topic><topic>Electron energy</topic><topic>Exact solutions</topic><topic>Experiments</topic><topic>Fluid flow</topic><topic>Free electrons</topic><topic>Hydronium ions</topic><topic>Ion transport</topic><topic>One dimensional flow</topic><topic>One dimensional models</topic><topic>oxyfuel</topic><topic>Plasma</topic><topic>Reynolds number</topic><topic>Saturation</topic><topic>sensing</topic><topic>sheath</topic><topic>Sheaths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin, Christopher</creatorcontrib><creatorcontrib>Untaroiu, Alexandrina</creatorcontrib><creatorcontrib>Xu, Kemu</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Combustion theory and modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin, Christopher</au><au>Untaroiu, Alexandrina</au><au>Xu, Kemu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A one-dimensional model for ion transport in a flame with two absorbing surfaces</atitle><jtitle>Combustion theory and modelling</jtitle><date>2021-01-02</date><risdate>2021</risdate><volume>25</volume><issue>1</issue><spage>22</spage><epage>43</epage><pages>22-43</pages><issn>1364-7830</issn><eissn>1741-3559</eissn><abstract>This paper presents numerical and asymptotic analytical solutions for the current-voltage characteristic of a flame using a one-dimensional ion transport model with boundary conditions that include detailed treatment of sheath formation. Non-dimensional conservation equations are presented for the free electron, the hydronium ion, and the electrical potential in a one-dimensional flow field with uniform velocity, electrical mobility, and diffusivity, but allowances are made for non-equilibrium electron temperature. In this study, the size and location of the ion formation region and the electric Reynolds numbers are changed, and their impacts are studied. The model predicts the formation of charged sheaths at both ends of the domain, which are responsible for saturation events that are reliably observed in experiments. A new saturation regime can be made to appear in the model, but its absence from the experiment is argued to have implications on transport near absorbing surfaces in the experiment. For example, the Reynolds numbers at which the current-voltage characteristic converges to the shape and magnitude observed in the experiment implies that the sheaths form in the low-velocity region in the real flow that reduces the apparent Reynolds number.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/13647830.2020.1826581</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-7129-9367</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1364-7830
ispartof Combustion theory and modelling, 2021-01, Vol.25 (1), p.22-43
issn 1364-7830
1741-3559
language eng
recordid cdi_crossref_primary_10_1080_13647830_2020_1826581
source Taylor & Francis:Master (3349 titles)
subjects Boundary conditions
Computational fluid dynamics
Conservation equations
Current voltage characteristics
Electron energy
Exact solutions
Experiments
Fluid flow
Free electrons
Hydronium ions
Ion transport
One dimensional flow
One dimensional models
oxyfuel
Plasma
Reynolds number
Saturation
sensing
sheath
Sheaths
title A one-dimensional model for ion transport in a flame with two absorbing surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A23%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20one-dimensional%20model%20for%20ion%20transport%20in%20a%20flame%20with%20two%20absorbing%20surfaces&rft.jtitle=Combustion%20theory%20and%20modelling&rft.au=Martin,%20Christopher&rft.date=2021-01-02&rft.volume=25&rft.issue=1&rft.spage=22&rft.epage=43&rft.pages=22-43&rft.issn=1364-7830&rft.eissn=1741-3559&rft_id=info:doi/10.1080/13647830.2020.1826581&rft_dat=%3Cproquest_cross%3E2485449576%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2485449576&rft_id=info:pmid/&rfr_iscdi=true