The topology of knots and links in nematics
We review some our results concerning the topology of knotted and linked defects in nematic liquid crystals. We discuss the global topological classification of nematic textures with defects, showing how knotted and linked defect lines have a finite number of 'internal states', counted by...
Gespeichert in:
Veröffentlicht in: | Liquid crystals today 2019-07, Vol.28 (3), p.58-67 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 67 |
---|---|
container_issue | 3 |
container_start_page | 58 |
container_title | Liquid crystals today |
container_volume | 28 |
creator | Machon, Thomas |
description | We review some our results concerning the topology of knotted and linked defects in nematic liquid crystals. We discuss the global topological classification of nematic textures with defects, showing how knotted and linked defect lines have a finite number of 'internal states', counted by the Alexander polynomial of the knot or link. We then give interpretations of these states in terms of umbilic lines, which we also introduce, as well as planar textures. We show how Milnor polynomials can be used to give explicit constructions of these textures. Finally, we discuss some open problems raised by this work. |
doi_str_mv | 10.1080/1358314X.2019.1681113 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_1358314X_2019_1681113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2320910866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-74e87965e54cd3af2365723520dc243e92c595239ada9cdc5e44ada37f6d09bd3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_QVjwKFsz-drNTSlWhYKXCt5CzIduu01qskX6701pvXqaOTzvO8yD0DXgCeAW3wHlLQX2PiEY5ARECwD0BI2ACVZzaOG07IWp99A5ush5iTE0hIsRul18uWqIm9jHz10VfbUKcciVDrbqu7DKVReq4NZ66Ey-RGde99ldHecYvc0eF9Pnev769DJ9mNeG0WaoG-baRgruODOWak-o4A2hnGBrCKNOEsMlJ1Rqq6WxhjvGykobLyyWH5aO0c2hd5Pi99blQS3jNoVyUhFKsCxPC1EofqBMijkn59UmdWuddgqw2ntRf17U3os6eim5-0OuCz6mtf6Jqbdq0Ls-Jp90MF1W9P-KX2yNaCo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2320910866</pqid></control><display><type>article</type><title>The topology of knots and links in nematics</title><source>Taylor & Francis (Open access)</source><source>EZB Electronic Journals Library</source><creator>Machon, Thomas</creator><creatorcontrib>Machon, Thomas</creatorcontrib><description>We review some our results concerning the topology of knotted and linked defects in nematic liquid crystals. We discuss the global topological classification of nematic textures with defects, showing how knotted and linked defect lines have a finite number of 'internal states', counted by the Alexander polynomial of the knot or link. We then give interpretations of these states in terms of umbilic lines, which we also introduce, as well as planar textures. We show how Milnor polynomials can be used to give explicit constructions of these textures. Finally, we discuss some open problems raised by this work.</description><identifier>ISSN: 1358-314X</identifier><identifier>EISSN: 1464-5181</identifier><identifier>DOI: 10.1080/1358314X.2019.1681113</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Crystal defects ; Defects ; Knots ; Liquid crystals ; Nematic crystals ; Polynomials ; Topology</subject><ispartof>Liquid crystals today, 2019-07, Vol.28 (3), p.58-67</ispartof><rights>2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2019</rights><rights>2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-74e87965e54cd3af2365723520dc243e92c595239ada9cdc5e44ada37f6d09bd3</citedby><cites>FETCH-LOGICAL-c437t-74e87965e54cd3af2365723520dc243e92c595239ada9cdc5e44ada37f6d09bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/1358314X.2019.1681113$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/1358314X.2019.1681113$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27502,27924,27925,59143,59144</link.rule.ids></links><search><creatorcontrib>Machon, Thomas</creatorcontrib><title>The topology of knots and links in nematics</title><title>Liquid crystals today</title><description>We review some our results concerning the topology of knotted and linked defects in nematic liquid crystals. We discuss the global topological classification of nematic textures with defects, showing how knotted and linked defect lines have a finite number of 'internal states', counted by the Alexander polynomial of the knot or link. We then give interpretations of these states in terms of umbilic lines, which we also introduce, as well as planar textures. We show how Milnor polynomials can be used to give explicit constructions of these textures. Finally, we discuss some open problems raised by this work.</description><subject>Crystal defects</subject><subject>Defects</subject><subject>Knots</subject><subject>Liquid crystals</subject><subject>Nematic crystals</subject><subject>Polynomials</subject><subject>Topology</subject><issn>1358-314X</issn><issn>1464-5181</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEQhoMoWKs_QVjwKFsz-drNTSlWhYKXCt5CzIduu01qskX6701pvXqaOTzvO8yD0DXgCeAW3wHlLQX2PiEY5ARECwD0BI2ACVZzaOG07IWp99A5ush5iTE0hIsRul18uWqIm9jHz10VfbUKcciVDrbqu7DKVReq4NZ66Ey-RGde99ldHecYvc0eF9Pnev769DJ9mNeG0WaoG-baRgruODOWak-o4A2hnGBrCKNOEsMlJ1Rqq6WxhjvGykobLyyWH5aO0c2hd5Pi99blQS3jNoVyUhFKsCxPC1EofqBMijkn59UmdWuddgqw2ntRf17U3os6eim5-0OuCz6mtf6Jqbdq0Ls-Jp90MF1W9P-KX2yNaCo</recordid><startdate>20190703</startdate><enddate>20190703</enddate><creator>Machon, Thomas</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20190703</creationdate><title>The topology of knots and links in nematics</title><author>Machon, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-74e87965e54cd3af2365723520dc243e92c595239ada9cdc5e44ada37f6d09bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Crystal defects</topic><topic>Defects</topic><topic>Knots</topic><topic>Liquid crystals</topic><topic>Nematic crystals</topic><topic>Polynomials</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Machon, Thomas</creatorcontrib><collection>Taylor & Francis (Open access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Liquid crystals today</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Machon, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The topology of knots and links in nematics</atitle><jtitle>Liquid crystals today</jtitle><date>2019-07-03</date><risdate>2019</risdate><volume>28</volume><issue>3</issue><spage>58</spage><epage>67</epage><pages>58-67</pages><issn>1358-314X</issn><eissn>1464-5181</eissn><abstract>We review some our results concerning the topology of knotted and linked defects in nematic liquid crystals. We discuss the global topological classification of nematic textures with defects, showing how knotted and linked defect lines have a finite number of 'internal states', counted by the Alexander polynomial of the knot or link. We then give interpretations of these states in terms of umbilic lines, which we also introduce, as well as planar textures. We show how Milnor polynomials can be used to give explicit constructions of these textures. Finally, we discuss some open problems raised by this work.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/1358314X.2019.1681113</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1358-314X |
ispartof | Liquid crystals today, 2019-07, Vol.28 (3), p.58-67 |
issn | 1358-314X 1464-5181 |
language | eng |
recordid | cdi_crossref_primary_10_1080_1358314X_2019_1681113 |
source | Taylor & Francis (Open access); EZB Electronic Journals Library |
subjects | Crystal defects Defects Knots Liquid crystals Nematic crystals Polynomials Topology |
title | The topology of knots and links in nematics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A29%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20topology%20of%20knots%20and%20links%20in%20nematics&rft.jtitle=Liquid%20crystals%20today&rft.au=Machon,%20Thomas&rft.date=2019-07-03&rft.volume=28&rft.issue=3&rft.spage=58&rft.epage=67&rft.pages=58-67&rft.issn=1358-314X&rft.eissn=1464-5181&rft_id=info:doi/10.1080/1358314X.2019.1681113&rft_dat=%3Cproquest_cross%3E2320910866%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2320910866&rft_id=info:pmid/&rfr_iscdi=true |