Trading futures spread portfolios: applications of higher order and recurrent networks
This paper investigates the modelling and trading of oil futures spreads in the context of a portfolio of contracts. A portfolio of six spreads is constructed and each spread forecasted using a variety of modelling techniques, namely, a cointegration fair value model and three different types of neu...
Gespeichert in:
Veröffentlicht in: | The European journal of finance 2008-01, Vol.14 (6), p.503-521 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 521 |
---|---|
container_issue | 6 |
container_start_page | 503 |
container_title | The European journal of finance |
container_volume | 14 |
creator | Dunis, Christian L. Laws, Jason Evans, Ben |
description | This paper investigates the modelling and trading of oil futures spreads in the context of a portfolio of contracts. A portfolio of six spreads is constructed and each spread forecasted using a variety of modelling techniques, namely, a cointegration fair value model and three different types of neural network (NN), such as multi-layer perceptron (MLP), recurrent, and higher order NN models. In addition, a number of trading filters are employed to further improve the trading statistics of the models. Three different filters are optimized on an in-sample measure of down side risk-adjusted return, and these are then fixed out-of-sample. The filters employed are the threshold filter, correlation filter, and the transitive filter. The results show that the best in-sample model is the MLP with a transitive filter. This model is the best performer out-of-sample and also returns good out-of-sample statistics. |
doi_str_mv | 10.1080/13518470801890834 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_13518470801890834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1595175411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c533t-ab172e22bbec45fd094877be803415d542cf48d0e632671005007d85c04e23b43</originalsourceid><addsrcrecordid>eNqFUMFu1DAQjRBIlMIHcIs4cFs6ju3YRVxQVSioEpeCuFmOM-56ycZh7AD79wxaxIFKcHgzI817TzOvaZ4KeCHAwpmQWlhleBT2HKxU95oTofp-o2Sv7vPM-w0TPj9sHpWyA4DegDppPt2QH9N828a1roSlLQuhH9slU415Srm8bP2yTCn4mvJc2hzbbbrdIrWZRq5-HlvCsBLhXNsZ6_dMX8rj5kH0U8Env_tp8_HN5c3F1eb6w9t3F6-vN0FLWTd-EKbDrhsGDErHEc6VNWZAC1IJPWrVhajsCNjLrjcCQAOY0eoACjs5KHnaPD_6LpS_rliq26cScJr8jHktThp-VBtg4rO_iLu80sy3uU5oa7TWlkniSAqUSyGMbqG093RwAtyvmN2dmFnz_qghXDD8EVQfcaVdTO6bk14oLgdGB2C5JUbPWBgapNOdcNu6Z7NXR7M0x0x7z1lOI3sdpkyR_BwSv_SvW8x_5XdUrv6o8ic2O64C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215875558</pqid></control><display><type>article</type><title>Trading futures spread portfolios: applications of higher order and recurrent networks</title><source>RePEc</source><source>Taylor & Francis Journals Complete</source><creator>Dunis, Christian L. ; Laws, Jason ; Evans, Ben</creator><creatorcontrib>Dunis, Christian L. ; Laws, Jason ; Evans, Ben</creatorcontrib><description>This paper investigates the modelling and trading of oil futures spreads in the context of a portfolio of contracts. A portfolio of six spreads is constructed and each spread forecasted using a variety of modelling techniques, namely, a cointegration fair value model and three different types of neural network (NN), such as multi-layer perceptron (MLP), recurrent, and higher order NN models. In addition, a number of trading filters are employed to further improve the trading statistics of the models. Three different filters are optimized on an in-sample measure of down side risk-adjusted return, and these are then fixed out-of-sample. The filters employed are the threshold filter, correlation filter, and the transitive filter. The results show that the best in-sample model is the MLP with a transitive filter. This model is the best performer out-of-sample and also returns good out-of-sample statistics.</description><identifier>ISSN: 1351-847X</identifier><identifier>EISSN: 1466-4364</identifier><identifier>DOI: 10.1080/13518470801890834</identifier><language>eng</language><publisher>London: Routledge</publisher><subject>Cointegration ; Commodity futures ; Forecasting techniques ; Futures ; futures spreads ; Futures trading ; higher order networks ; Neural networks ; Oil price ; Portfolio management ; recurrent networks ; Spread ; Studies ; trading filters</subject><ispartof>The European journal of finance, 2008-01, Vol.14 (6), p.503-521</ispartof><rights>Copyright Taylor & Francis Group, LLC 2008</rights><rights>Copyright Taylor & Francis Group Sep 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c533t-ab172e22bbec45fd094877be803415d542cf48d0e632671005007d85c04e23b43</citedby><cites>FETCH-LOGICAL-c533t-ab172e22bbec45fd094877be803415d542cf48d0e632671005007d85c04e23b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/13518470801890834$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/13518470801890834$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,4008,27924,27925,59647,60436</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/tafeurjfi/v_3a14_3ay_3a2008_3ai_3a6_3ap_3a503-521.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Dunis, Christian L.</creatorcontrib><creatorcontrib>Laws, Jason</creatorcontrib><creatorcontrib>Evans, Ben</creatorcontrib><title>Trading futures spread portfolios: applications of higher order and recurrent networks</title><title>The European journal of finance</title><description>This paper investigates the modelling and trading of oil futures spreads in the context of a portfolio of contracts. A portfolio of six spreads is constructed and each spread forecasted using a variety of modelling techniques, namely, a cointegration fair value model and three different types of neural network (NN), such as multi-layer perceptron (MLP), recurrent, and higher order NN models. In addition, a number of trading filters are employed to further improve the trading statistics of the models. Three different filters are optimized on an in-sample measure of down side risk-adjusted return, and these are then fixed out-of-sample. The filters employed are the threshold filter, correlation filter, and the transitive filter. The results show that the best in-sample model is the MLP with a transitive filter. This model is the best performer out-of-sample and also returns good out-of-sample statistics.</description><subject>Cointegration</subject><subject>Commodity futures</subject><subject>Forecasting techniques</subject><subject>Futures</subject><subject>futures spreads</subject><subject>Futures trading</subject><subject>higher order networks</subject><subject>Neural networks</subject><subject>Oil price</subject><subject>Portfolio management</subject><subject>recurrent networks</subject><subject>Spread</subject><subject>Studies</subject><subject>trading filters</subject><issn>1351-847X</issn><issn>1466-4364</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFUMFu1DAQjRBIlMIHcIs4cFs6ju3YRVxQVSioEpeCuFmOM-56ycZh7AD79wxaxIFKcHgzI817TzOvaZ4KeCHAwpmQWlhleBT2HKxU95oTofp-o2Sv7vPM-w0TPj9sHpWyA4DegDppPt2QH9N828a1roSlLQuhH9slU415Srm8bP2yTCn4mvJc2hzbbbrdIrWZRq5-HlvCsBLhXNsZ6_dMX8rj5kH0U8Env_tp8_HN5c3F1eb6w9t3F6-vN0FLWTd-EKbDrhsGDErHEc6VNWZAC1IJPWrVhajsCNjLrjcCQAOY0eoACjs5KHnaPD_6LpS_rliq26cScJr8jHktThp-VBtg4rO_iLu80sy3uU5oa7TWlkniSAqUSyGMbqG093RwAtyvmN2dmFnz_qghXDD8EVQfcaVdTO6bk14oLgdGB2C5JUbPWBgapNOdcNu6Z7NXR7M0x0x7z1lOI3sdpkyR_BwSv_SvW8x_5XdUrv6o8ic2O64C</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Dunis, Christian L.</creator><creator>Laws, Jason</creator><creator>Evans, Ben</creator><general>Routledge</general><general>Taylor and Francis Journals</general><general>Taylor & Francis LLC</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20080101</creationdate><title>Trading futures spread portfolios: applications of higher order and recurrent networks</title><author>Dunis, Christian L. ; Laws, Jason ; Evans, Ben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c533t-ab172e22bbec45fd094877be803415d542cf48d0e632671005007d85c04e23b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Cointegration</topic><topic>Commodity futures</topic><topic>Forecasting techniques</topic><topic>Futures</topic><topic>futures spreads</topic><topic>Futures trading</topic><topic>higher order networks</topic><topic>Neural networks</topic><topic>Oil price</topic><topic>Portfolio management</topic><topic>recurrent networks</topic><topic>Spread</topic><topic>Studies</topic><topic>trading filters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dunis, Christian L.</creatorcontrib><creatorcontrib>Laws, Jason</creatorcontrib><creatorcontrib>Evans, Ben</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>The European journal of finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dunis, Christian L.</au><au>Laws, Jason</au><au>Evans, Ben</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trading futures spread portfolios: applications of higher order and recurrent networks</atitle><jtitle>The European journal of finance</jtitle><date>2008-01-01</date><risdate>2008</risdate><volume>14</volume><issue>6</issue><spage>503</spage><epage>521</epage><pages>503-521</pages><issn>1351-847X</issn><eissn>1466-4364</eissn><abstract>This paper investigates the modelling and trading of oil futures spreads in the context of a portfolio of contracts. A portfolio of six spreads is constructed and each spread forecasted using a variety of modelling techniques, namely, a cointegration fair value model and three different types of neural network (NN), such as multi-layer perceptron (MLP), recurrent, and higher order NN models. In addition, a number of trading filters are employed to further improve the trading statistics of the models. Three different filters are optimized on an in-sample measure of down side risk-adjusted return, and these are then fixed out-of-sample. The filters employed are the threshold filter, correlation filter, and the transitive filter. The results show that the best in-sample model is the MLP with a transitive filter. This model is the best performer out-of-sample and also returns good out-of-sample statistics.</abstract><cop>London</cop><pub>Routledge</pub><doi>10.1080/13518470801890834</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1351-847X |
ispartof | The European journal of finance, 2008-01, Vol.14 (6), p.503-521 |
issn | 1351-847X 1466-4364 |
language | eng |
recordid | cdi_crossref_primary_10_1080_13518470801890834 |
source | RePEc; Taylor & Francis Journals Complete |
subjects | Cointegration Commodity futures Forecasting techniques Futures futures spreads Futures trading higher order networks Neural networks Oil price Portfolio management recurrent networks Spread Studies trading filters |
title | Trading futures spread portfolios: applications of higher order and recurrent networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A24%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trading%20futures%20spread%20portfolios:%20applications%20of%20higher%20order%20and%20recurrent%20networks&rft.jtitle=The%20European%20journal%20of%20finance&rft.au=Dunis,%20Christian%20L.&rft.date=2008-01-01&rft.volume=14&rft.issue=6&rft.spage=503&rft.epage=521&rft.pages=503-521&rft.issn=1351-847X&rft.eissn=1466-4364&rft_id=info:doi/10.1080/13518470801890834&rft_dat=%3Cproquest_cross%3E1595175411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215875558&rft_id=info:pmid/&rfr_iscdi=true |