Trading futures spread portfolios: applications of higher order and recurrent networks

This paper investigates the modelling and trading of oil futures spreads in the context of a portfolio of contracts. A portfolio of six spreads is constructed and each spread forecasted using a variety of modelling techniques, namely, a cointegration fair value model and three different types of neu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European journal of finance 2008-01, Vol.14 (6), p.503-521
Hauptverfasser: Dunis, Christian L., Laws, Jason, Evans, Ben
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 521
container_issue 6
container_start_page 503
container_title The European journal of finance
container_volume 14
creator Dunis, Christian L.
Laws, Jason
Evans, Ben
description This paper investigates the modelling and trading of oil futures spreads in the context of a portfolio of contracts. A portfolio of six spreads is constructed and each spread forecasted using a variety of modelling techniques, namely, a cointegration fair value model and three different types of neural network (NN), such as multi-layer perceptron (MLP), recurrent, and higher order NN models. In addition, a number of trading filters are employed to further improve the trading statistics of the models. Three different filters are optimized on an in-sample measure of down side risk-adjusted return, and these are then fixed out-of-sample. The filters employed are the threshold filter, correlation filter, and the transitive filter. The results show that the best in-sample model is the MLP with a transitive filter. This model is the best performer out-of-sample and also returns good out-of-sample statistics.
doi_str_mv 10.1080/13518470801890834
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_13518470801890834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1595175411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c533t-ab172e22bbec45fd094877be803415d542cf48d0e632671005007d85c04e23b43</originalsourceid><addsrcrecordid>eNqFUMFu1DAQjRBIlMIHcIs4cFs6ju3YRVxQVSioEpeCuFmOM-56ycZh7AD79wxaxIFKcHgzI817TzOvaZ4KeCHAwpmQWlhleBT2HKxU95oTofp-o2Sv7vPM-w0TPj9sHpWyA4DegDppPt2QH9N828a1roSlLQuhH9slU415Srm8bP2yTCn4mvJc2hzbbbrdIrWZRq5-HlvCsBLhXNsZ6_dMX8rj5kH0U8Env_tp8_HN5c3F1eb6w9t3F6-vN0FLWTd-EKbDrhsGDErHEc6VNWZAC1IJPWrVhajsCNjLrjcCQAOY0eoACjs5KHnaPD_6LpS_rliq26cScJr8jHktThp-VBtg4rO_iLu80sy3uU5oa7TWlkniSAqUSyGMbqG093RwAtyvmN2dmFnz_qghXDD8EVQfcaVdTO6bk14oLgdGB2C5JUbPWBgapNOdcNu6Z7NXR7M0x0x7z1lOI3sdpkyR_BwSv_SvW8x_5XdUrv6o8ic2O64C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215875558</pqid></control><display><type>article</type><title>Trading futures spread portfolios: applications of higher order and recurrent networks</title><source>RePEc</source><source>Taylor &amp; Francis Journals Complete</source><creator>Dunis, Christian L. ; Laws, Jason ; Evans, Ben</creator><creatorcontrib>Dunis, Christian L. ; Laws, Jason ; Evans, Ben</creatorcontrib><description>This paper investigates the modelling and trading of oil futures spreads in the context of a portfolio of contracts. A portfolio of six spreads is constructed and each spread forecasted using a variety of modelling techniques, namely, a cointegration fair value model and three different types of neural network (NN), such as multi-layer perceptron (MLP), recurrent, and higher order NN models. In addition, a number of trading filters are employed to further improve the trading statistics of the models. Three different filters are optimized on an in-sample measure of down side risk-adjusted return, and these are then fixed out-of-sample. The filters employed are the threshold filter, correlation filter, and the transitive filter. The results show that the best in-sample model is the MLP with a transitive filter. This model is the best performer out-of-sample and also returns good out-of-sample statistics.</description><identifier>ISSN: 1351-847X</identifier><identifier>EISSN: 1466-4364</identifier><identifier>DOI: 10.1080/13518470801890834</identifier><language>eng</language><publisher>London: Routledge</publisher><subject>Cointegration ; Commodity futures ; Forecasting techniques ; Futures ; futures spreads ; Futures trading ; higher order networks ; Neural networks ; Oil price ; Portfolio management ; recurrent networks ; Spread ; Studies ; trading filters</subject><ispartof>The European journal of finance, 2008-01, Vol.14 (6), p.503-521</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2008</rights><rights>Copyright Taylor &amp; Francis Group Sep 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c533t-ab172e22bbec45fd094877be803415d542cf48d0e632671005007d85c04e23b43</citedby><cites>FETCH-LOGICAL-c533t-ab172e22bbec45fd094877be803415d542cf48d0e632671005007d85c04e23b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/13518470801890834$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/13518470801890834$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,4008,27924,27925,59647,60436</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/tafeurjfi/v_3a14_3ay_3a2008_3ai_3a6_3ap_3a503-521.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Dunis, Christian L.</creatorcontrib><creatorcontrib>Laws, Jason</creatorcontrib><creatorcontrib>Evans, Ben</creatorcontrib><title>Trading futures spread portfolios: applications of higher order and recurrent networks</title><title>The European journal of finance</title><description>This paper investigates the modelling and trading of oil futures spreads in the context of a portfolio of contracts. A portfolio of six spreads is constructed and each spread forecasted using a variety of modelling techniques, namely, a cointegration fair value model and three different types of neural network (NN), such as multi-layer perceptron (MLP), recurrent, and higher order NN models. In addition, a number of trading filters are employed to further improve the trading statistics of the models. Three different filters are optimized on an in-sample measure of down side risk-adjusted return, and these are then fixed out-of-sample. The filters employed are the threshold filter, correlation filter, and the transitive filter. The results show that the best in-sample model is the MLP with a transitive filter. This model is the best performer out-of-sample and also returns good out-of-sample statistics.</description><subject>Cointegration</subject><subject>Commodity futures</subject><subject>Forecasting techniques</subject><subject>Futures</subject><subject>futures spreads</subject><subject>Futures trading</subject><subject>higher order networks</subject><subject>Neural networks</subject><subject>Oil price</subject><subject>Portfolio management</subject><subject>recurrent networks</subject><subject>Spread</subject><subject>Studies</subject><subject>trading filters</subject><issn>1351-847X</issn><issn>1466-4364</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFUMFu1DAQjRBIlMIHcIs4cFs6ju3YRVxQVSioEpeCuFmOM-56ycZh7AD79wxaxIFKcHgzI817TzOvaZ4KeCHAwpmQWlhleBT2HKxU95oTofp-o2Sv7vPM-w0TPj9sHpWyA4DegDppPt2QH9N828a1roSlLQuhH9slU415Srm8bP2yTCn4mvJc2hzbbbrdIrWZRq5-HlvCsBLhXNsZ6_dMX8rj5kH0U8Env_tp8_HN5c3F1eb6w9t3F6-vN0FLWTd-EKbDrhsGDErHEc6VNWZAC1IJPWrVhajsCNjLrjcCQAOY0eoACjs5KHnaPD_6LpS_rliq26cScJr8jHktThp-VBtg4rO_iLu80sy3uU5oa7TWlkniSAqUSyGMbqG093RwAtyvmN2dmFnz_qghXDD8EVQfcaVdTO6bk14oLgdGB2C5JUbPWBgapNOdcNu6Z7NXR7M0x0x7z1lOI3sdpkyR_BwSv_SvW8x_5XdUrv6o8ic2O64C</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Dunis, Christian L.</creator><creator>Laws, Jason</creator><creator>Evans, Ben</creator><general>Routledge</general><general>Taylor and Francis Journals</general><general>Taylor &amp; Francis LLC</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20080101</creationdate><title>Trading futures spread portfolios: applications of higher order and recurrent networks</title><author>Dunis, Christian L. ; Laws, Jason ; Evans, Ben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c533t-ab172e22bbec45fd094877be803415d542cf48d0e632671005007d85c04e23b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Cointegration</topic><topic>Commodity futures</topic><topic>Forecasting techniques</topic><topic>Futures</topic><topic>futures spreads</topic><topic>Futures trading</topic><topic>higher order networks</topic><topic>Neural networks</topic><topic>Oil price</topic><topic>Portfolio management</topic><topic>recurrent networks</topic><topic>Spread</topic><topic>Studies</topic><topic>trading filters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dunis, Christian L.</creatorcontrib><creatorcontrib>Laws, Jason</creatorcontrib><creatorcontrib>Evans, Ben</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>The European journal of finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dunis, Christian L.</au><au>Laws, Jason</au><au>Evans, Ben</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trading futures spread portfolios: applications of higher order and recurrent networks</atitle><jtitle>The European journal of finance</jtitle><date>2008-01-01</date><risdate>2008</risdate><volume>14</volume><issue>6</issue><spage>503</spage><epage>521</epage><pages>503-521</pages><issn>1351-847X</issn><eissn>1466-4364</eissn><abstract>This paper investigates the modelling and trading of oil futures spreads in the context of a portfolio of contracts. A portfolio of six spreads is constructed and each spread forecasted using a variety of modelling techniques, namely, a cointegration fair value model and three different types of neural network (NN), such as multi-layer perceptron (MLP), recurrent, and higher order NN models. In addition, a number of trading filters are employed to further improve the trading statistics of the models. Three different filters are optimized on an in-sample measure of down side risk-adjusted return, and these are then fixed out-of-sample. The filters employed are the threshold filter, correlation filter, and the transitive filter. The results show that the best in-sample model is the MLP with a transitive filter. This model is the best performer out-of-sample and also returns good out-of-sample statistics.</abstract><cop>London</cop><pub>Routledge</pub><doi>10.1080/13518470801890834</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1351-847X
ispartof The European journal of finance, 2008-01, Vol.14 (6), p.503-521
issn 1351-847X
1466-4364
language eng
recordid cdi_crossref_primary_10_1080_13518470801890834
source RePEc; Taylor & Francis Journals Complete
subjects Cointegration
Commodity futures
Forecasting techniques
Futures
futures spreads
Futures trading
higher order networks
Neural networks
Oil price
Portfolio management
recurrent networks
Spread
Studies
trading filters
title Trading futures spread portfolios: applications of higher order and recurrent networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A24%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trading%20futures%20spread%20portfolios:%20applications%20of%20higher%20order%20and%20recurrent%20networks&rft.jtitle=The%20European%20journal%20of%20finance&rft.au=Dunis,%20Christian%20L.&rft.date=2008-01-01&rft.volume=14&rft.issue=6&rft.spage=503&rft.epage=521&rft.pages=503-521&rft.issn=1351-847X&rft.eissn=1466-4364&rft_id=info:doi/10.1080/13518470801890834&rft_dat=%3Cproquest_cross%3E1595175411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215875558&rft_id=info:pmid/&rfr_iscdi=true