The convolution method for the development of new leibniz rules involving fractional derivatives and of their integral analogues

Leibniz rules for the operator of fractional derivatives and their integral analogues were considered, among other workers on the subject of fractional calculus, by T.J. Osler and Y. Watanabe. This operator of fractional derivatives is known to belong to a class of integral transforms associated wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integral transforms and special functions 1993-10, Vol.1 (2), p.119-134
Hauptverfasser: Srivastava, H.M., Yakubovich, S.B., Luchko, Yu.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 134
container_issue 2
container_start_page 119
container_title Integral transforms and special functions
container_volume 1
creator Srivastava, H.M.
Yakubovich, S.B.
Luchko, Yu.F.
description Leibniz rules for the operator of fractional derivatives and their integral analogues were considered, among other workers on the subject of fractional calculus, by T.J. Osler and Y. Watanabe. This operator of fractional derivatives is known to belong to a class of integral transforms associated with the Mellin convolution. Since Mejer' G-function transformation happens to be one of the most general integral transforms of this class, it would seem natural to obtain some new Leibniz rules and their integral analogues for operators involving the G-transforms. The object of the present paper is to summarize the development and applications of a general method for constructing such Leibniz rules and their integral analogues based upon the notion of the G-convolution and upon various representations of the kernels fo G-convolutions.
doi_str_mv 10.1080/10652469308819014
format Article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10652469308819014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_10652469308819014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c211t-48644006c498b4b0ff3b49b01e67e2e98ae71988f7143f009366ba36811689593</originalsourceid><addsrcrecordid>eNp1kM1KAzEURoMoWKsP4C4vMJo7yWQScCPFPyi4qeshM5O0kTQpyXRKXfnoZqg7cXUv3HM-uB9Ct0DugAhyD4RXJeOSEiFAEmBnaAas5oUoJZznPd-LCbhEVyl9EgK0qqsZ-l5tNO6CH4PbDzZ4vNXDJvTYhIiHfOr1qF3YbbUfcDDY6wN22rbefuG4dzphO6mj9WtsouqmCOWyFe2oBjtmQPl-MnOYjZke9DpmQmUsrPc6XaMLo1zSN79zjj6en1aL12L5_vK2eFwWXQkwFExwxgjhHZOiZS0xhrZMtgQ0r3WppVC6BimEqYFRQ4iknLeKcgHAhawknSM45XYxpBS1aXbRblU8NkCaqcLmT4XZeTg51uc-tuoQouubQR1diPlb39nU0P_1H_AfeKM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The convolution method for the development of new leibniz rules involving fractional derivatives and of their integral analogues</title><source>Taylor &amp; Francis:Master (3349 titles)</source><creator>Srivastava, H.M. ; Yakubovich, S.B. ; Luchko, Yu.F.</creator><creatorcontrib>Srivastava, H.M. ; Yakubovich, S.B. ; Luchko, Yu.F.</creatorcontrib><description>Leibniz rules for the operator of fractional derivatives and their integral analogues were considered, among other workers on the subject of fractional calculus, by T.J. Osler and Y. Watanabe. This operator of fractional derivatives is known to belong to a class of integral transforms associated with the Mellin convolution. Since Mejer' G-function transformation happens to be one of the most general integral transforms of this class, it would seem natural to obtain some new Leibniz rules and their integral analogues for operators involving the G-transforms. The object of the present paper is to summarize the development and applications of a general method for constructing such Leibniz rules and their integral analogues based upon the notion of the G-convolution and upon various representations of the kernels fo G-convolutions.</description><identifier>ISSN: 1065-2469</identifier><identifier>EISSN: 1476-8291</identifier><identifier>DOI: 10.1080/10652469308819014</identifier><language>eng</language><publisher>Gordon and Breach Science Publishers</publisher><subject>fractional derivatives ; G-convolution ; G-transform ; Leibniz rules ; Meijer's G-function</subject><ispartof>Integral transforms and special functions, 1993-10, Vol.1 (2), p.119-134</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1993</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c211t-48644006c498b4b0ff3b49b01e67e2e98ae71988f7143f009366ba36811689593</citedby><cites>FETCH-LOGICAL-c211t-48644006c498b4b0ff3b49b01e67e2e98ae71988f7143f009366ba36811689593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/10652469308819014$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/10652469308819014$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,59646,60435</link.rule.ids></links><search><creatorcontrib>Srivastava, H.M.</creatorcontrib><creatorcontrib>Yakubovich, S.B.</creatorcontrib><creatorcontrib>Luchko, Yu.F.</creatorcontrib><title>The convolution method for the development of new leibniz rules involving fractional derivatives and of their integral analogues</title><title>Integral transforms and special functions</title><description>Leibniz rules for the operator of fractional derivatives and their integral analogues were considered, among other workers on the subject of fractional calculus, by T.J. Osler and Y. Watanabe. This operator of fractional derivatives is known to belong to a class of integral transforms associated with the Mellin convolution. Since Mejer' G-function transformation happens to be one of the most general integral transforms of this class, it would seem natural to obtain some new Leibniz rules and their integral analogues for operators involving the G-transforms. The object of the present paper is to summarize the development and applications of a general method for constructing such Leibniz rules and their integral analogues based upon the notion of the G-convolution and upon various representations of the kernels fo G-convolutions.</description><subject>fractional derivatives</subject><subject>G-convolution</subject><subject>G-transform</subject><subject>Leibniz rules</subject><subject>Meijer's G-function</subject><issn>1065-2469</issn><issn>1476-8291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEURoMoWKsP4C4vMJo7yWQScCPFPyi4qeshM5O0kTQpyXRKXfnoZqg7cXUv3HM-uB9Ct0DugAhyD4RXJeOSEiFAEmBnaAas5oUoJZznPd-LCbhEVyl9EgK0qqsZ-l5tNO6CH4PbDzZ4vNXDJvTYhIiHfOr1qF3YbbUfcDDY6wN22rbefuG4dzphO6mj9WtsouqmCOWyFe2oBjtmQPl-MnOYjZke9DpmQmUsrPc6XaMLo1zSN79zjj6en1aL12L5_vK2eFwWXQkwFExwxgjhHZOiZS0xhrZMtgQ0r3WppVC6BimEqYFRQ4iknLeKcgHAhawknSM45XYxpBS1aXbRblU8NkCaqcLmT4XZeTg51uc-tuoQouubQR1diPlb39nU0P_1H_AfeKM</recordid><startdate>19931001</startdate><enddate>19931001</enddate><creator>Srivastava, H.M.</creator><creator>Yakubovich, S.B.</creator><creator>Luchko, Yu.F.</creator><general>Gordon and Breach Science Publishers</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19931001</creationdate><title>The convolution method for the development of new leibniz rules involving fractional derivatives and of their integral analogues</title><author>Srivastava, H.M. ; Yakubovich, S.B. ; Luchko, Yu.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c211t-48644006c498b4b0ff3b49b01e67e2e98ae71988f7143f009366ba36811689593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>fractional derivatives</topic><topic>G-convolution</topic><topic>G-transform</topic><topic>Leibniz rules</topic><topic>Meijer's G-function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Srivastava, H.M.</creatorcontrib><creatorcontrib>Yakubovich, S.B.</creatorcontrib><creatorcontrib>Luchko, Yu.F.</creatorcontrib><collection>CrossRef</collection><jtitle>Integral transforms and special functions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Srivastava, H.M.</au><au>Yakubovich, S.B.</au><au>Luchko, Yu.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The convolution method for the development of new leibniz rules involving fractional derivatives and of their integral analogues</atitle><jtitle>Integral transforms and special functions</jtitle><date>1993-10-01</date><risdate>1993</risdate><volume>1</volume><issue>2</issue><spage>119</spage><epage>134</epage><pages>119-134</pages><issn>1065-2469</issn><eissn>1476-8291</eissn><abstract>Leibniz rules for the operator of fractional derivatives and their integral analogues were considered, among other workers on the subject of fractional calculus, by T.J. Osler and Y. Watanabe. This operator of fractional derivatives is known to belong to a class of integral transforms associated with the Mellin convolution. Since Mejer' G-function transformation happens to be one of the most general integral transforms of this class, it would seem natural to obtain some new Leibniz rules and their integral analogues for operators involving the G-transforms. The object of the present paper is to summarize the development and applications of a general method for constructing such Leibniz rules and their integral analogues based upon the notion of the G-convolution and upon various representations of the kernels fo G-convolutions.</abstract><pub>Gordon and Breach Science Publishers</pub><doi>10.1080/10652469308819014</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1065-2469
ispartof Integral transforms and special functions, 1993-10, Vol.1 (2), p.119-134
issn 1065-2469
1476-8291
language eng
recordid cdi_crossref_primary_10_1080_10652469308819014
source Taylor & Francis:Master (3349 titles)
subjects fractional derivatives
G-convolution
G-transform
Leibniz rules
Meijer's G-function
title The convolution method for the development of new leibniz rules involving fractional derivatives and of their integral analogues
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A36%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20convolution%20method%20for%20the%20development%20of%20new%20leibniz%20rules%20involving%20fractional%20derivatives%20and%20of%20their%20integral%20analogues&rft.jtitle=Integral%20transforms%20and%20special%20functions&rft.au=Srivastava,%20H.M.&rft.date=1993-10-01&rft.volume=1&rft.issue=2&rft.spage=119&rft.epage=134&rft.pages=119-134&rft.issn=1065-2469&rft.eissn=1476-8291&rft_id=info:doi/10.1080/10652469308819014&rft_dat=%3Ccrossref_infor%3E10_1080_10652469308819014%3C/crossref_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true