The convolution method for the development of new leibniz rules involving fractional derivatives and of their integral analogues
Leibniz rules for the operator of fractional derivatives and their integral analogues were considered, among other workers on the subject of fractional calculus, by T.J. Osler and Y. Watanabe. This operator of fractional derivatives is known to belong to a class of integral transforms associated wit...
Gespeichert in:
Veröffentlicht in: | Integral transforms and special functions 1993-10, Vol.1 (2), p.119-134 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 134 |
---|---|
container_issue | 2 |
container_start_page | 119 |
container_title | Integral transforms and special functions |
container_volume | 1 |
creator | Srivastava, H.M. Yakubovich, S.B. Luchko, Yu.F. |
description | Leibniz rules for the operator of fractional derivatives and their integral analogues were considered, among other workers on the subject of fractional calculus, by T.J. Osler and Y. Watanabe. This operator of fractional derivatives is known to belong to a class of integral transforms associated with the Mellin convolution. Since Mejer' G-function transformation happens to be one of the most general integral transforms of this class, it would seem natural to obtain some new Leibniz rules and their integral analogues for operators involving the G-transforms. The object of the present paper is to summarize the development and applications of a general method for constructing such Leibniz rules and their integral analogues based upon the notion of the G-convolution and upon various representations of the kernels fo G-convolutions. |
doi_str_mv | 10.1080/10652469308819014 |
format | Article |
fullrecord | <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10652469308819014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_10652469308819014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c211t-48644006c498b4b0ff3b49b01e67e2e98ae71988f7143f009366ba36811689593</originalsourceid><addsrcrecordid>eNp1kM1KAzEURoMoWKsP4C4vMJo7yWQScCPFPyi4qeshM5O0kTQpyXRKXfnoZqg7cXUv3HM-uB9Ct0DugAhyD4RXJeOSEiFAEmBnaAas5oUoJZznPd-LCbhEVyl9EgK0qqsZ-l5tNO6CH4PbDzZ4vNXDJvTYhIiHfOr1qF3YbbUfcDDY6wN22rbefuG4dzphO6mj9WtsouqmCOWyFe2oBjtmQPl-MnOYjZke9DpmQmUsrPc6XaMLo1zSN79zjj6en1aL12L5_vK2eFwWXQkwFExwxgjhHZOiZS0xhrZMtgQ0r3WppVC6BimEqYFRQ4iknLeKcgHAhawknSM45XYxpBS1aXbRblU8NkCaqcLmT4XZeTg51uc-tuoQouubQR1diPlb39nU0P_1H_AfeKM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The convolution method for the development of new leibniz rules involving fractional derivatives and of their integral analogues</title><source>Taylor & Francis:Master (3349 titles)</source><creator>Srivastava, H.M. ; Yakubovich, S.B. ; Luchko, Yu.F.</creator><creatorcontrib>Srivastava, H.M. ; Yakubovich, S.B. ; Luchko, Yu.F.</creatorcontrib><description>Leibniz rules for the operator of fractional derivatives and their integral analogues were considered, among other workers on the subject of fractional calculus, by T.J. Osler and Y. Watanabe. This operator of fractional derivatives is known to belong to a class of integral transforms associated with the Mellin convolution. Since Mejer' G-function transformation happens to be one of the most general integral transforms of this class, it would seem natural to obtain some new Leibniz rules and their integral analogues for operators involving the G-transforms. The object of the present paper is to summarize the development and applications of a general method for constructing such Leibniz rules and their integral analogues based upon the notion of the G-convolution and upon various representations of the kernels fo G-convolutions.</description><identifier>ISSN: 1065-2469</identifier><identifier>EISSN: 1476-8291</identifier><identifier>DOI: 10.1080/10652469308819014</identifier><language>eng</language><publisher>Gordon and Breach Science Publishers</publisher><subject>fractional derivatives ; G-convolution ; G-transform ; Leibniz rules ; Meijer's G-function</subject><ispartof>Integral transforms and special functions, 1993-10, Vol.1 (2), p.119-134</ispartof><rights>Copyright Taylor & Francis Group, LLC 1993</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c211t-48644006c498b4b0ff3b49b01e67e2e98ae71988f7143f009366ba36811689593</citedby><cites>FETCH-LOGICAL-c211t-48644006c498b4b0ff3b49b01e67e2e98ae71988f7143f009366ba36811689593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/10652469308819014$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/10652469308819014$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,59646,60435</link.rule.ids></links><search><creatorcontrib>Srivastava, H.M.</creatorcontrib><creatorcontrib>Yakubovich, S.B.</creatorcontrib><creatorcontrib>Luchko, Yu.F.</creatorcontrib><title>The convolution method for the development of new leibniz rules involving fractional derivatives and of their integral analogues</title><title>Integral transforms and special functions</title><description>Leibniz rules for the operator of fractional derivatives and their integral analogues were considered, among other workers on the subject of fractional calculus, by T.J. Osler and Y. Watanabe. This operator of fractional derivatives is known to belong to a class of integral transforms associated with the Mellin convolution. Since Mejer' G-function transformation happens to be one of the most general integral transforms of this class, it would seem natural to obtain some new Leibniz rules and their integral analogues for operators involving the G-transforms. The object of the present paper is to summarize the development and applications of a general method for constructing such Leibniz rules and their integral analogues based upon the notion of the G-convolution and upon various representations of the kernels fo G-convolutions.</description><subject>fractional derivatives</subject><subject>G-convolution</subject><subject>G-transform</subject><subject>Leibniz rules</subject><subject>Meijer's G-function</subject><issn>1065-2469</issn><issn>1476-8291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEURoMoWKsP4C4vMJo7yWQScCPFPyi4qeshM5O0kTQpyXRKXfnoZqg7cXUv3HM-uB9Ct0DugAhyD4RXJeOSEiFAEmBnaAas5oUoJZznPd-LCbhEVyl9EgK0qqsZ-l5tNO6CH4PbDzZ4vNXDJvTYhIiHfOr1qF3YbbUfcDDY6wN22rbefuG4dzphO6mj9WtsouqmCOWyFe2oBjtmQPl-MnOYjZke9DpmQmUsrPc6XaMLo1zSN79zjj6en1aL12L5_vK2eFwWXQkwFExwxgjhHZOiZS0xhrZMtgQ0r3WppVC6BimEqYFRQ4iknLeKcgHAhawknSM45XYxpBS1aXbRblU8NkCaqcLmT4XZeTg51uc-tuoQouubQR1diPlb39nU0P_1H_AfeKM</recordid><startdate>19931001</startdate><enddate>19931001</enddate><creator>Srivastava, H.M.</creator><creator>Yakubovich, S.B.</creator><creator>Luchko, Yu.F.</creator><general>Gordon and Breach Science Publishers</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19931001</creationdate><title>The convolution method for the development of new leibniz rules involving fractional derivatives and of their integral analogues</title><author>Srivastava, H.M. ; Yakubovich, S.B. ; Luchko, Yu.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c211t-48644006c498b4b0ff3b49b01e67e2e98ae71988f7143f009366ba36811689593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>fractional derivatives</topic><topic>G-convolution</topic><topic>G-transform</topic><topic>Leibniz rules</topic><topic>Meijer's G-function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Srivastava, H.M.</creatorcontrib><creatorcontrib>Yakubovich, S.B.</creatorcontrib><creatorcontrib>Luchko, Yu.F.</creatorcontrib><collection>CrossRef</collection><jtitle>Integral transforms and special functions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Srivastava, H.M.</au><au>Yakubovich, S.B.</au><au>Luchko, Yu.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The convolution method for the development of new leibniz rules involving fractional derivatives and of their integral analogues</atitle><jtitle>Integral transforms and special functions</jtitle><date>1993-10-01</date><risdate>1993</risdate><volume>1</volume><issue>2</issue><spage>119</spage><epage>134</epage><pages>119-134</pages><issn>1065-2469</issn><eissn>1476-8291</eissn><abstract>Leibniz rules for the operator of fractional derivatives and their integral analogues were considered, among other workers on the subject of fractional calculus, by T.J. Osler and Y. Watanabe. This operator of fractional derivatives is known to belong to a class of integral transforms associated with the Mellin convolution. Since Mejer' G-function transformation happens to be one of the most general integral transforms of this class, it would seem natural to obtain some new Leibniz rules and their integral analogues for operators involving the G-transforms. The object of the present paper is to summarize the development and applications of a general method for constructing such Leibniz rules and their integral analogues based upon the notion of the G-convolution and upon various representations of the kernels fo G-convolutions.</abstract><pub>Gordon and Breach Science Publishers</pub><doi>10.1080/10652469308819014</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1065-2469 |
ispartof | Integral transforms and special functions, 1993-10, Vol.1 (2), p.119-134 |
issn | 1065-2469 1476-8291 |
language | eng |
recordid | cdi_crossref_primary_10_1080_10652469308819014 |
source | Taylor & Francis:Master (3349 titles) |
subjects | fractional derivatives G-convolution G-transform Leibniz rules Meijer's G-function |
title | The convolution method for the development of new leibniz rules involving fractional derivatives and of their integral analogues |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A36%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20convolution%20method%20for%20the%20development%20of%20new%20leibniz%20rules%20involving%20fractional%20derivatives%20and%20of%20their%20integral%20analogues&rft.jtitle=Integral%20transforms%20and%20special%20functions&rft.au=Srivastava,%20H.M.&rft.date=1993-10-01&rft.volume=1&rft.issue=2&rft.spage=119&rft.epage=134&rft.pages=119-134&rft.issn=1065-2469&rft.eissn=1476-8291&rft_id=info:doi/10.1080/10652469308819014&rft_dat=%3Ccrossref_infor%3E10_1080_10652469308819014%3C/crossref_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |