Scatterplots for Logistic Regression

We present a method for graphically displaying regression data with Bernoulli responses. The method, which is based on the use of grayscale graphics to visualize contributions to a likelihood function, provides an analog of a scatterplot for logistic regression, as well as probit analysis. Furthermo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and graphical statistics 1999-09, Vol.8 (3), p.413-425
Hauptverfasser: Eno, Daniel R., Terrell, George R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 425
container_issue 3
container_start_page 413
container_title Journal of computational and graphical statistics
container_volume 8
creator Eno, Daniel R.
Terrell, George R.
description We present a method for graphically displaying regression data with Bernoulli responses. The method, which is based on the use of grayscale graphics to visualize contributions to a likelihood function, provides an analog of a scatterplot for logistic regression, as well as probit analysis. Furthermore, the method may be used in place of a traditional scatterplot in situations where such plots are often used.
doi_str_mv 10.1080/10618600.1999.10474822
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10618600_1999_10474822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1390865</jstor_id><sourcerecordid>1390865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-3e292f503ce6d20107a36d6d0b26151899782ae96a2e450cfd7d8045ad7649a43</originalsourceid><addsrcrecordid>eNqFj8tKAzEUhoMoWKuvILPodvQkmdyWpXiDAcHLOsQkU6ZMJyUJSN_eDGPBnatz4fvP4UPoFsMdBgn3GDiWHMqklCqrRjSSkDO0wIyKmgjMzktfoHqiLtFVSjsAwFyJBVq9W5Ozj4ch5FR1IVZt2PYp97Z689voU-rDeI0uOjMkf_Nbl-jz8eFj81y3r08vm3VbWyJFrqkninQMqPXcEcAgDOWOO_giHDMslRKSGK-4Ib5hYDsnnISGGSd4o0xDl4jPd20MKUXf6UPs9yYeNQY9ueqTq55c9cm1BFdzcJdyiH9ThILQmCqQnBVsPWP9WEz35jvEwelsjkOIXTSj7ZOm_7z6AcilZTE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Scatterplots for Logistic Regression</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Eno, Daniel R. ; Terrell, George R.</creator><creatorcontrib>Eno, Daniel R. ; Terrell, George R.</creatorcontrib><description>We present a method for graphically displaying regression data with Bernoulli responses. The method, which is based on the use of grayscale graphics to visualize contributions to a likelihood function, provides an analog of a scatterplot for logistic regression, as well as probit analysis. Furthermore, the method may be used in place of a traditional scatterplot in situations where such plots are often used.</description><identifier>ISSN: 1061-8600</identifier><identifier>EISSN: 1537-2715</identifier><identifier>DOI: 10.1080/10618600.1999.10474822</identifier><language>eng</language><publisher>Taylor &amp; Francis Group</publisher><subject>Binomials ; Contour lines ; Datasets ; Discussion Article ; Gray scale ; Grayscale ; Likelihood ; Linear regression ; Logistic regression ; Maximum likelihood estimation ; Maximum likelihood estimators ; Poisson regression ; Probit ; Regression analysis ; Sample size</subject><ispartof>Journal of computational and graphical statistics, 1999-09, Vol.8 (3), p.413-425</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1999</rights><rights>Copyright 1999 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-3e292f503ce6d20107a36d6d0b26151899782ae96a2e450cfd7d8045ad7649a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1390865$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1390865$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Eno, Daniel R.</creatorcontrib><creatorcontrib>Terrell, George R.</creatorcontrib><title>Scatterplots for Logistic Regression</title><title>Journal of computational and graphical statistics</title><description>We present a method for graphically displaying regression data with Bernoulli responses. The method, which is based on the use of grayscale graphics to visualize contributions to a likelihood function, provides an analog of a scatterplot for logistic regression, as well as probit analysis. Furthermore, the method may be used in place of a traditional scatterplot in situations where such plots are often used.</description><subject>Binomials</subject><subject>Contour lines</subject><subject>Datasets</subject><subject>Discussion Article</subject><subject>Gray scale</subject><subject>Grayscale</subject><subject>Likelihood</subject><subject>Linear regression</subject><subject>Logistic regression</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood estimators</subject><subject>Poisson regression</subject><subject>Probit</subject><subject>Regression analysis</subject><subject>Sample size</subject><issn>1061-8600</issn><issn>1537-2715</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFj8tKAzEUhoMoWKuvILPodvQkmdyWpXiDAcHLOsQkU6ZMJyUJSN_eDGPBnatz4fvP4UPoFsMdBgn3GDiWHMqklCqrRjSSkDO0wIyKmgjMzktfoHqiLtFVSjsAwFyJBVq9W5Ozj4ch5FR1IVZt2PYp97Z689voU-rDeI0uOjMkf_Nbl-jz8eFj81y3r08vm3VbWyJFrqkninQMqPXcEcAgDOWOO_giHDMslRKSGK-4Ib5hYDsnnISGGSd4o0xDl4jPd20MKUXf6UPs9yYeNQY9ueqTq55c9cm1BFdzcJdyiH9ThILQmCqQnBVsPWP9WEz35jvEwelsjkOIXTSj7ZOm_7z6AcilZTE</recordid><startdate>19990901</startdate><enddate>19990901</enddate><creator>Eno, Daniel R.</creator><creator>Terrell, George R.</creator><general>Taylor &amp; Francis Group</general><general>American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19990901</creationdate><title>Scatterplots for Logistic Regression</title><author>Eno, Daniel R. ; Terrell, George R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-3e292f503ce6d20107a36d6d0b26151899782ae96a2e450cfd7d8045ad7649a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Binomials</topic><topic>Contour lines</topic><topic>Datasets</topic><topic>Discussion Article</topic><topic>Gray scale</topic><topic>Grayscale</topic><topic>Likelihood</topic><topic>Linear regression</topic><topic>Logistic regression</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood estimators</topic><topic>Poisson regression</topic><topic>Probit</topic><topic>Regression analysis</topic><topic>Sample size</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eno, Daniel R.</creatorcontrib><creatorcontrib>Terrell, George R.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of computational and graphical statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eno, Daniel R.</au><au>Terrell, George R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scatterplots for Logistic Regression</atitle><jtitle>Journal of computational and graphical statistics</jtitle><date>1999-09-01</date><risdate>1999</risdate><volume>8</volume><issue>3</issue><spage>413</spage><epage>425</epage><pages>413-425</pages><issn>1061-8600</issn><eissn>1537-2715</eissn><abstract>We present a method for graphically displaying regression data with Bernoulli responses. The method, which is based on the use of grayscale graphics to visualize contributions to a likelihood function, provides an analog of a scatterplot for logistic regression, as well as probit analysis. Furthermore, the method may be used in place of a traditional scatterplot in situations where such plots are often used.</abstract><pub>Taylor &amp; Francis Group</pub><doi>10.1080/10618600.1999.10474822</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1061-8600
ispartof Journal of computational and graphical statistics, 1999-09, Vol.8 (3), p.413-425
issn 1061-8600
1537-2715
language eng
recordid cdi_crossref_primary_10_1080_10618600_1999_10474822
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Binomials
Contour lines
Datasets
Discussion Article
Gray scale
Grayscale
Likelihood
Linear regression
Logistic regression
Maximum likelihood estimation
Maximum likelihood estimators
Poisson regression
Probit
Regression analysis
Sample size
title Scatterplots for Logistic Regression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A57%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scatterplots%20for%20Logistic%20Regression&rft.jtitle=Journal%20of%20computational%20and%20graphical%20statistics&rft.au=Eno,%20Daniel%20R.&rft.date=1999-09-01&rft.volume=8&rft.issue=3&rft.spage=413&rft.epage=425&rft.pages=413-425&rft.issn=1061-8600&rft.eissn=1537-2715&rft_id=info:doi/10.1080/10618600.1999.10474822&rft_dat=%3Cjstor_cross%3E1390865%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=1390865&rfr_iscdi=true