3D Imaging and Simulation of the Polarisation Distribution in Molecular Crystals

The spatial polarisation distribution in inhomogeneously polar molecular crystals has been imaged by scanning pyroelectric tomography and simulated by a Markov process. The experimental technique combines scanning pyroelectric microscopy (SPEM) with layerwise thinning of crystals. The SPEM probes th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular crystals and liquid crystals science and technology. Section A, Molecular crystals and liquid crystals Molecular crystals and liquid crystals, 2000-01, Vol.338 (1), p.243-256
Hauptverfasser: Quintel, Andrea, Roth, Stephan W., Hulliger, Jürg, Wübbenhorst, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 256
container_issue 1
container_start_page 243
container_title Molecular crystals and liquid crystals science and technology. Section A, Molecular crystals and liquid crystals
container_volume 338
creator Quintel, Andrea
Roth, Stephan W.
Hulliger, Jürg
Wübbenhorst, Michael
description The spatial polarisation distribution in inhomogeneously polar molecular crystals has been imaged by scanning pyroelectric tomography and simulated by a Markov process. The experimental technique combines scanning pyroelectric microscopy (SPEM) with layerwise thinning of crystals. The SPEM probes the local spontaneous polarisation by its temperature dependence (pyroelectric effect). A focused and intensity modulated laser beam scans the surface of a polar sample and induces temperature changes in a volume depending on the laser spot size and the thermal diffusion length λ th . Since high lateral resolution of the SPEM is only available for small values of λ th . depth information to a resolution of ∼ 10 μ is achieved by repeated scanning and stepwise thinning of crystals. A layer by layer technique can provide 3D imaging of the polar ordering with a lateral resolution of ∼ 20 μ at a probed layer thickness of ∼ 10 μ. Applied to perhydrotriphenylene (PHTP) co-crystallised with 1-(4-nitrophenyl)piperazine (NPP) two conical macro-domains of opposite and nearly constant polarisation were found. The SPEM results are in good agreement with a homogeneous Markov chain model driving dipolar molecules into a parallel state within channels of PHTP. The new tomographic view reveals that the opposing cones are partially overlapping at the tips. Lateral growth processes are assumed to be responsible for this. A theoretical section covers aspects of the convergency into the polar state and the length of polar chains discussed in terms of intermolecular interaction energies.
doi_str_mv 10.1080/10587250008024433
format Article
fullrecord <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10587250008024433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>794408</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-7651d7bd7c62a0bf0e2186f4608221ad2c6e8c78042df6a00679ddde131276323</originalsourceid><addsrcrecordid>eNqFkE9LAzEUxHNQsFY_gLeA59WXP5tswYu0WgsVCyp4W9JkUyO7m5KkaL-9W1e9FPQ0zDC_92AQOiNwQaCASwJ5IWkO0BnKOWMHaLDLsi58OULHMb4BUJJzPkALNsGzRq1cu8KqNfjRNZtaJedb7C1OrxVe-FoFF_ts4mIKbrn5Mq7F976udAcEPA7bmFQdT9Ch7aQ6_dYher69eRrfZfOH6Wx8Pc80kzRlUuTEyKWRWlAFSwsVJYWwXEBBKVGGalEVWhbAqbFCAQg5MsZUhBEqBaNsiEh_VwcfY6hsuQ6uUWFbEih3M5R7M3TMec-sVdSqtkG12sVfUI44h6JrXfUt11ofGvXuQ23KpLa1Dz8I--uJ_Bffo8r0kdgn88eDCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>3D Imaging and Simulation of the Polarisation Distribution in Molecular Crystals</title><source>Taylor &amp; Francis</source><creator>Quintel, Andrea ; Roth, Stephan W. ; Hulliger, Jürg ; Wübbenhorst, Michael</creator><creatorcontrib>Quintel, Andrea ; Roth, Stephan W. ; Hulliger, Jürg ; Wübbenhorst, Michael</creatorcontrib><description>The spatial polarisation distribution in inhomogeneously polar molecular crystals has been imaged by scanning pyroelectric tomography and simulated by a Markov process. The experimental technique combines scanning pyroelectric microscopy (SPEM) with layerwise thinning of crystals. The SPEM probes the local spontaneous polarisation by its temperature dependence (pyroelectric effect). A focused and intensity modulated laser beam scans the surface of a polar sample and induces temperature changes in a volume depending on the laser spot size and the thermal diffusion length λ th . Since high lateral resolution of the SPEM is only available for small values of λ th . depth information to a resolution of ∼ 10 μ is achieved by repeated scanning and stepwise thinning of crystals. A layer by layer technique can provide 3D imaging of the polar ordering with a lateral resolution of ∼ 20 μ at a probed layer thickness of ∼ 10 μ. Applied to perhydrotriphenylene (PHTP) co-crystallised with 1-(4-nitrophenyl)piperazine (NPP) two conical macro-domains of opposite and nearly constant polarisation were found. The SPEM results are in good agreement with a homogeneous Markov chain model driving dipolar molecules into a parallel state within channels of PHTP. The new tomographic view reveals that the opposing cones are partially overlapping at the tips. Lateral growth processes are assumed to be responsible for this. A theoretical section covers aspects of the convergency into the polar state and the length of polar chains discussed in terms of intermolecular interaction energies.</description><identifier>ISSN: 1058-725X</identifier><identifier>DOI: 10.1080/10587250008024433</identifier><language>eng</language><publisher>Philadelphia, PA: Taylor &amp; Francis Group</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Dielectric properties of solids and liquids ; Dielectrics, piezoelectrics, and ferroelectrics and their properties ; Exact sciences and technology ; inclusion compound ; Markov process ; Physics ; Polarization and depolarization ; Pyroelectric and electrocaloric effects ; pyroelectricity ; scanning probe microscopy ; tomography</subject><ispartof>Molecular crystals and liquid crystals science and technology. Section A, Molecular crystals and liquid crystals, 2000-01, Vol.338 (1), p.243-256</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2000</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-7651d7bd7c62a0bf0e2186f4608221ad2c6e8c78042df6a00679ddde131276323</citedby><cites>FETCH-LOGICAL-c372t-7651d7bd7c62a0bf0e2186f4608221ad2c6e8c78042df6a00679ddde131276323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/10587250008024433$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/10587250008024433$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,4010,27900,27901,27902,59620,60409</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=794408$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Quintel, Andrea</creatorcontrib><creatorcontrib>Roth, Stephan W.</creatorcontrib><creatorcontrib>Hulliger, Jürg</creatorcontrib><creatorcontrib>Wübbenhorst, Michael</creatorcontrib><title>3D Imaging and Simulation of the Polarisation Distribution in Molecular Crystals</title><title>Molecular crystals and liquid crystals science and technology. Section A, Molecular crystals and liquid crystals</title><description>The spatial polarisation distribution in inhomogeneously polar molecular crystals has been imaged by scanning pyroelectric tomography and simulated by a Markov process. The experimental technique combines scanning pyroelectric microscopy (SPEM) with layerwise thinning of crystals. The SPEM probes the local spontaneous polarisation by its temperature dependence (pyroelectric effect). A focused and intensity modulated laser beam scans the surface of a polar sample and induces temperature changes in a volume depending on the laser spot size and the thermal diffusion length λ th . Since high lateral resolution of the SPEM is only available for small values of λ th . depth information to a resolution of ∼ 10 μ is achieved by repeated scanning and stepwise thinning of crystals. A layer by layer technique can provide 3D imaging of the polar ordering with a lateral resolution of ∼ 20 μ at a probed layer thickness of ∼ 10 μ. Applied to perhydrotriphenylene (PHTP) co-crystallised with 1-(4-nitrophenyl)piperazine (NPP) two conical macro-domains of opposite and nearly constant polarisation were found. The SPEM results are in good agreement with a homogeneous Markov chain model driving dipolar molecules into a parallel state within channels of PHTP. The new tomographic view reveals that the opposing cones are partially overlapping at the tips. Lateral growth processes are assumed to be responsible for this. A theoretical section covers aspects of the convergency into the polar state and the length of polar chains discussed in terms of intermolecular interaction energies.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Dielectric properties of solids and liquids</subject><subject>Dielectrics, piezoelectrics, and ferroelectrics and their properties</subject><subject>Exact sciences and technology</subject><subject>inclusion compound</subject><subject>Markov process</subject><subject>Physics</subject><subject>Polarization and depolarization</subject><subject>Pyroelectric and electrocaloric effects</subject><subject>pyroelectricity</subject><subject>scanning probe microscopy</subject><subject>tomography</subject><issn>1058-725X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEUxHNQsFY_gLeA59WXP5tswYu0WgsVCyp4W9JkUyO7m5KkaL-9W1e9FPQ0zDC_92AQOiNwQaCASwJ5IWkO0BnKOWMHaLDLsi58OULHMb4BUJJzPkALNsGzRq1cu8KqNfjRNZtaJedb7C1OrxVe-FoFF_ts4mIKbrn5Mq7F976udAcEPA7bmFQdT9Ch7aQ6_dYher69eRrfZfOH6Wx8Pc80kzRlUuTEyKWRWlAFSwsVJYWwXEBBKVGGalEVWhbAqbFCAQg5MsZUhBEqBaNsiEh_VwcfY6hsuQ6uUWFbEih3M5R7M3TMec-sVdSqtkG12sVfUI44h6JrXfUt11ofGvXuQ23KpLa1Dz8I--uJ_Bffo8r0kdgn88eDCw</recordid><startdate>20000101</startdate><enddate>20000101</enddate><creator>Quintel, Andrea</creator><creator>Roth, Stephan W.</creator><creator>Hulliger, Jürg</creator><creator>Wübbenhorst, Michael</creator><general>Taylor &amp; Francis Group</general><general>Gordon and Breach</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20000101</creationdate><title>3D Imaging and Simulation of the Polarisation Distribution in Molecular Crystals</title><author>Quintel, Andrea ; Roth, Stephan W. ; Hulliger, Jürg ; Wübbenhorst, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-7651d7bd7c62a0bf0e2186f4608221ad2c6e8c78042df6a00679ddde131276323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Dielectric properties of solids and liquids</topic><topic>Dielectrics, piezoelectrics, and ferroelectrics and their properties</topic><topic>Exact sciences and technology</topic><topic>inclusion compound</topic><topic>Markov process</topic><topic>Physics</topic><topic>Polarization and depolarization</topic><topic>Pyroelectric and electrocaloric effects</topic><topic>pyroelectricity</topic><topic>scanning probe microscopy</topic><topic>tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quintel, Andrea</creatorcontrib><creatorcontrib>Roth, Stephan W.</creatorcontrib><creatorcontrib>Hulliger, Jürg</creatorcontrib><creatorcontrib>Wübbenhorst, Michael</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Molecular crystals and liquid crystals science and technology. Section A, Molecular crystals and liquid crystals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quintel, Andrea</au><au>Roth, Stephan W.</au><au>Hulliger, Jürg</au><au>Wübbenhorst, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Imaging and Simulation of the Polarisation Distribution in Molecular Crystals</atitle><jtitle>Molecular crystals and liquid crystals science and technology. Section A, Molecular crystals and liquid crystals</jtitle><date>2000-01-01</date><risdate>2000</risdate><volume>338</volume><issue>1</issue><spage>243</spage><epage>256</epage><pages>243-256</pages><issn>1058-725X</issn><abstract>The spatial polarisation distribution in inhomogeneously polar molecular crystals has been imaged by scanning pyroelectric tomography and simulated by a Markov process. The experimental technique combines scanning pyroelectric microscopy (SPEM) with layerwise thinning of crystals. The SPEM probes the local spontaneous polarisation by its temperature dependence (pyroelectric effect). A focused and intensity modulated laser beam scans the surface of a polar sample and induces temperature changes in a volume depending on the laser spot size and the thermal diffusion length λ th . Since high lateral resolution of the SPEM is only available for small values of λ th . depth information to a resolution of ∼ 10 μ is achieved by repeated scanning and stepwise thinning of crystals. A layer by layer technique can provide 3D imaging of the polar ordering with a lateral resolution of ∼ 20 μ at a probed layer thickness of ∼ 10 μ. Applied to perhydrotriphenylene (PHTP) co-crystallised with 1-(4-nitrophenyl)piperazine (NPP) two conical macro-domains of opposite and nearly constant polarisation were found. The SPEM results are in good agreement with a homogeneous Markov chain model driving dipolar molecules into a parallel state within channels of PHTP. The new tomographic view reveals that the opposing cones are partially overlapping at the tips. Lateral growth processes are assumed to be responsible for this. A theoretical section covers aspects of the convergency into the polar state and the length of polar chains discussed in terms of intermolecular interaction energies.</abstract><cop>Philadelphia, PA</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/10587250008024433</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1058-725X
ispartof Molecular crystals and liquid crystals science and technology. Section A, Molecular crystals and liquid crystals, 2000-01, Vol.338 (1), p.243-256
issn 1058-725X
language eng
recordid cdi_crossref_primary_10_1080_10587250008024433
source Taylor & Francis
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Dielectric properties of solids and liquids
Dielectrics, piezoelectrics, and ferroelectrics and their properties
Exact sciences and technology
inclusion compound
Markov process
Physics
Polarization and depolarization
Pyroelectric and electrocaloric effects
pyroelectricity
scanning probe microscopy
tomography
title 3D Imaging and Simulation of the Polarisation Distribution in Molecular Crystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A14%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Imaging%20and%20Simulation%20of%20the%20Polarisation%20Distribution%20in%20Molecular%20Crystals&rft.jtitle=Molecular%20crystals%20and%20liquid%20crystals%20science%20and%20technology.%20Section%20A,%20Molecular%20crystals%20and%20liquid%20crystals&rft.au=Quintel,%20Andrea&rft.date=2000-01-01&rft.volume=338&rft.issue=1&rft.spage=243&rft.epage=256&rft.pages=243-256&rft.issn=1058-725X&rft_id=info:doi/10.1080/10587250008024433&rft_dat=%3Cpascalfrancis_cross%3E794408%3C/pascalfrancis_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true