Formalizing Ordinal Partition Relations Using Isabelle/HOL

This is an overview of a formalization project in the proof assistant Isabelle/HOL of a number of research results in infinitary combinatorics and set theory (more specifically in ordinal partition relations) by Erdős-Milner, Specker, Larson and Nash-Williams, leading to Larson's proof of the u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental mathematics 2022-07, Vol.31 (2), p.383-400
Hauptverfasser: Džamonja, Mirna, Koutsoukou-Argyraki, Angeliki, Paulson, Lawrence C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 400
container_issue 2
container_start_page 383
container_title Experimental mathematics
container_volume 31
creator Džamonja, Mirna
Koutsoukou-Argyraki, Angeliki
Paulson, Lawrence C.
description This is an overview of a formalization project in the proof assistant Isabelle/HOL of a number of research results in infinitary combinatorics and set theory (more specifically in ordinal partition relations) by Erdős-Milner, Specker, Larson and Nash-Williams, leading to Larson's proof of the unpublished result by E.C. Milner asserting that for all , . This material has been recently formalised by Paulson and is available on the Archive of Formal Proofs; here we discuss some of the most challenging aspects of the formalization process. This project is also a demonstration of working with Zermelo-Fraenkel set theory in higher-order logic.
doi_str_mv 10.1080/10586458.2021.1980464
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10586458_2021_1980464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03203361v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-6a0f4c23175555f9cbcede49bead5dda3d4944ced7b1b24497697a030f87bec43</originalsourceid><addsrcrecordid>eNp9kFFLwzAQx4MoOKcfQeirD90uTdI2PjmGs4PCRBz4Fq5tqpGslaQo89PbsOmj93LH8fsfx4-QawozCjnMKYg85SKfJZDQGZU58JSfkAmVnMdSwMvpOI9MHKBzcuH9OwDlQuYTcrvq3Q6t-Tbda7RxjenQRo_oBjOYvouetMUw-GjrA7H2WGlr9bzYlJfkrEXr9dWxT8l2df-8LOJy87BeLsq4ZpIOcYrQ8jphNBNjtbKuat1oLiuNjWgaZA0f_xx3WUWrhHOZpTJDYNDmWaVrzqbk5nD3Da36cGaHbq96NKpYlCrsgCXAWEo_6ciKA1u73nun278ABRVkqV9ZKshSR1lj7u6QM10bhHz1zjZqwL3tXeuwq41X7P8TP3CbcC0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Formalizing Ordinal Partition Relations Using Isabelle/HOL</title><source>Taylor &amp; Francis Journals Complete</source><creator>Džamonja, Mirna ; Koutsoukou-Argyraki, Angeliki ; Paulson, Lawrence C.</creator><creatorcontrib>Džamonja, Mirna ; Koutsoukou-Argyraki, Angeliki ; Paulson, Lawrence C.</creatorcontrib><description>This is an overview of a formalization project in the proof assistant Isabelle/HOL of a number of research results in infinitary combinatorics and set theory (more specifically in ordinal partition relations) by Erdős-Milner, Specker, Larson and Nash-Williams, leading to Larson's proof of the unpublished result by E.C. Milner asserting that for all , . This material has been recently formalised by Paulson and is available on the Archive of Formal Proofs; here we discuss some of the most challenging aspects of the formalization process. This project is also a demonstration of working with Zermelo-Fraenkel set theory in higher-order logic.</description><identifier>ISSN: 1058-6458</identifier><identifier>EISSN: 1944-950X</identifier><identifier>DOI: 10.1080/10586458.2021.1980464</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><subject>interactive theorem proving ; Isabelle ; Logic ; Mathematics ; Ordinal partition relations ; proof assistants ; set theory</subject><ispartof>Experimental mathematics, 2022-07, Vol.31 (2), p.383-400</ispartof><rights>2021 The Author(s). Published with license by Taylor and Francis Group, LLC 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-6a0f4c23175555f9cbcede49bead5dda3d4944ced7b1b24497697a030f87bec43</citedby><cites>FETCH-LOGICAL-c391t-6a0f4c23175555f9cbcede49bead5dda3d4944ced7b1b24497697a030f87bec43</cites><orcidid>0000-0003-0288-4279 ; 0000-0002-6771-3975 ; 0000-0002-8886-5281</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/10586458.2021.1980464$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/10586458.2021.1980464$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,59620,60409</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03203361$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Džamonja, Mirna</creatorcontrib><creatorcontrib>Koutsoukou-Argyraki, Angeliki</creatorcontrib><creatorcontrib>Paulson, Lawrence C.</creatorcontrib><title>Formalizing Ordinal Partition Relations Using Isabelle/HOL</title><title>Experimental mathematics</title><description>This is an overview of a formalization project in the proof assistant Isabelle/HOL of a number of research results in infinitary combinatorics and set theory (more specifically in ordinal partition relations) by Erdős-Milner, Specker, Larson and Nash-Williams, leading to Larson's proof of the unpublished result by E.C. Milner asserting that for all , . This material has been recently formalised by Paulson and is available on the Archive of Formal Proofs; here we discuss some of the most challenging aspects of the formalization process. This project is also a demonstration of working with Zermelo-Fraenkel set theory in higher-order logic.</description><subject>interactive theorem proving</subject><subject>Isabelle</subject><subject>Logic</subject><subject>Mathematics</subject><subject>Ordinal partition relations</subject><subject>proof assistants</subject><subject>set theory</subject><issn>1058-6458</issn><issn>1944-950X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNp9kFFLwzAQx4MoOKcfQeirD90uTdI2PjmGs4PCRBz4Fq5tqpGslaQo89PbsOmj93LH8fsfx4-QawozCjnMKYg85SKfJZDQGZU58JSfkAmVnMdSwMvpOI9MHKBzcuH9OwDlQuYTcrvq3Q6t-Tbda7RxjenQRo_oBjOYvouetMUw-GjrA7H2WGlr9bzYlJfkrEXr9dWxT8l2df-8LOJy87BeLsq4ZpIOcYrQ8jphNBNjtbKuat1oLiuNjWgaZA0f_xx3WUWrhHOZpTJDYNDmWaVrzqbk5nD3Da36cGaHbq96NKpYlCrsgCXAWEo_6ciKA1u73nun278ABRVkqV9ZKshSR1lj7u6QM10bhHz1zjZqwL3tXeuwq41X7P8TP3CbcC0</recordid><startdate>20220727</startdate><enddate>20220727</enddate><creator>Džamonja, Mirna</creator><creator>Koutsoukou-Argyraki, Angeliki</creator><creator>Paulson, Lawrence C.</creator><general>Taylor &amp; Francis</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0288-4279</orcidid><orcidid>https://orcid.org/0000-0002-6771-3975</orcidid><orcidid>https://orcid.org/0000-0002-8886-5281</orcidid></search><sort><creationdate>20220727</creationdate><title>Formalizing Ordinal Partition Relations Using Isabelle/HOL</title><author>Džamonja, Mirna ; Koutsoukou-Argyraki, Angeliki ; Paulson, Lawrence C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-6a0f4c23175555f9cbcede49bead5dda3d4944ced7b1b24497697a030f87bec43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>interactive theorem proving</topic><topic>Isabelle</topic><topic>Logic</topic><topic>Mathematics</topic><topic>Ordinal partition relations</topic><topic>proof assistants</topic><topic>set theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Džamonja, Mirna</creatorcontrib><creatorcontrib>Koutsoukou-Argyraki, Angeliki</creatorcontrib><creatorcontrib>Paulson, Lawrence C.</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Experimental mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Džamonja, Mirna</au><au>Koutsoukou-Argyraki, Angeliki</au><au>Paulson, Lawrence C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formalizing Ordinal Partition Relations Using Isabelle/HOL</atitle><jtitle>Experimental mathematics</jtitle><date>2022-07-27</date><risdate>2022</risdate><volume>31</volume><issue>2</issue><spage>383</spage><epage>400</epage><pages>383-400</pages><issn>1058-6458</issn><eissn>1944-950X</eissn><abstract>This is an overview of a formalization project in the proof assistant Isabelle/HOL of a number of research results in infinitary combinatorics and set theory (more specifically in ordinal partition relations) by Erdős-Milner, Specker, Larson and Nash-Williams, leading to Larson's proof of the unpublished result by E.C. Milner asserting that for all , . This material has been recently formalised by Paulson and is available on the Archive of Formal Proofs; here we discuss some of the most challenging aspects of the formalization process. This project is also a demonstration of working with Zermelo-Fraenkel set theory in higher-order logic.</abstract><pub>Taylor &amp; Francis</pub><doi>10.1080/10586458.2021.1980464</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-0288-4279</orcidid><orcidid>https://orcid.org/0000-0002-6771-3975</orcidid><orcidid>https://orcid.org/0000-0002-8886-5281</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1058-6458
ispartof Experimental mathematics, 2022-07, Vol.31 (2), p.383-400
issn 1058-6458
1944-950X
language eng
recordid cdi_crossref_primary_10_1080_10586458_2021_1980464
source Taylor & Francis Journals Complete
subjects interactive theorem proving
Isabelle
Logic
Mathematics
Ordinal partition relations
proof assistants
set theory
title Formalizing Ordinal Partition Relations Using Isabelle/HOL
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T10%3A23%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formalizing%20Ordinal%20Partition%20Relations%20Using%20Isabelle/HOL&rft.jtitle=Experimental%20mathematics&rft.au=D%C5%BEamonja,%20Mirna&rft.date=2022-07-27&rft.volume=31&rft.issue=2&rft.spage=383&rft.epage=400&rft.pages=383-400&rft.issn=1058-6458&rft.eissn=1944-950X&rft_id=info:doi/10.1080/10586458.2021.1980464&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03203361v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true