A Multiple Imputation Method for Sensitivity Analyses of Time-to-Event Data with Possibly Informative Censoring

This article presents a multiple imputation method for sensitivity analyses of time-to-event data with possibly informative censoring. The imputed time for censored values is drawn from the failure time distribution conditional on the time of follow-up discontinuation. A variety of specifications re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biopharmaceutical statistics 2014-03, Vol.24 (2), p.229-253
Hauptverfasser: Zhao, Yue, Herring, Amy H., Zhou, Haibo, Ali, Mirza W., Koch, Gary G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 253
container_issue 2
container_start_page 229
container_title Journal of biopharmaceutical statistics
container_volume 24
creator Zhao, Yue
Herring, Amy H.
Zhou, Haibo
Ali, Mirza W.
Koch, Gary G.
description This article presents a multiple imputation method for sensitivity analyses of time-to-event data with possibly informative censoring. The imputed time for censored values is drawn from the failure time distribution conditional on the time of follow-up discontinuation. A variety of specifications regarding the post-discontinuation tendency of having events can be incorporated in the imputation through a hazard ratio parameter for discontinuation versus continuation of follow-up. Multiple-imputed data sets are analyzed with the primary analysis method, and the results are then combined using the methods of Rubin. An illustrative example is provided.
doi_str_mv 10.1080/10543406.2013.860769
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10543406_2013_860769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1520968652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-ef7b9bba44158828e6acf00843d74f16ae4908c2229c75f13b0a2f72e747c82b3</originalsourceid><addsrcrecordid>eNqNkV1rFDEUhgdRbK3-A5GAN97MepLJ19woy1p1oUXBeh0ys0k3JTNZk8yW-fdm3baoFyK5SCDPeXNynqp6iWGBQcJbDIw2FPiCAG4WkoPg7aPqFDMCNRMYPy7ngtQH5qR6ltINAGZC0qfVCaEcWMvFaRWW6HLy2e28QethN2WdXRjRpcnbsEE2RPTNjMllt3d5RstR-zmZhIJFV24wdQ71-d6MGX3QWaNbl7foa0jJdX5G67GUDyVvb9CqhIToxuvn1ROrfTIv7vaz6vvH86vV5_riy6f1anlR94ywXBsrurbrNKWYSUmk4bq3AJI2G0Et5trQFmRPCGl7wSxuOtDECmIEFb0kXXNWvTvm7qZuMJu-9Bi1V7voBh1nFbRTf96Mbquuw15RgFZQXALe3AXE8GMyKavBpd54r0cTpqQOc2655Iz8Bwq8_KNIKejrv9CbMMUy1V9USzCUVSh6pPpYhhmNfegbgzrIV_fy1UG-OsovZa9-__ND0b3tArw_Au6o5jZEv1FZzz5EG_XYu6Safz7xE_8-vo0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1509210101</pqid></control><display><type>article</type><title>A Multiple Imputation Method for Sensitivity Analyses of Time-to-Event Data with Possibly Informative Censoring</title><source>MEDLINE</source><source>EBSCOhost Business Source Complete</source><creator>Zhao, Yue ; Herring, Amy H. ; Zhou, Haibo ; Ali, Mirza W. ; Koch, Gary G.</creator><creatorcontrib>Zhao, Yue ; Herring, Amy H. ; Zhou, Haibo ; Ali, Mirza W. ; Koch, Gary G.</creatorcontrib><description>This article presents a multiple imputation method for sensitivity analyses of time-to-event data with possibly informative censoring. The imputed time for censored values is drawn from the failure time distribution conditional on the time of follow-up discontinuation. A variety of specifications regarding the post-discontinuation tendency of having events can be incorporated in the imputation through a hazard ratio parameter for discontinuation versus continuation of follow-up. Multiple-imputed data sets are analyzed with the primary analysis method, and the results are then combined using the methods of Rubin. An illustrative example is provided.</description><identifier>ISSN: 1054-3406</identifier><identifier>EISSN: 1520-5711</identifier><identifier>DOI: 10.1080/10543406.2013.860769</identifier><identifier>PMID: 24605967</identifier><language>eng</language><publisher>England: Taylor &amp; Francis Group</publisher><subject>Clinical Trials as Topic - statistics &amp; numerical data ; Data Interpretation, Statistical ; Failure times ; Follow-Up Studies ; Hazards ; Humans ; Information ; Kaplan-Meier Estimate ; Multiple imputation ; Sensitivity analysis ; Specifications ; Statistics ; Time Factors ; Time-to-event data ; Withholding Treatment - statistics &amp; numerical data</subject><ispartof>Journal of biopharmaceutical statistics, 2014-03, Vol.24 (2), p.229-253</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2014</rights><rights>Copyright Taylor &amp; Francis Ltd. 2014</rights><rights>Copyright © Taylor &amp; Francis Group, LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-ef7b9bba44158828e6acf00843d74f16ae4908c2229c75f13b0a2f72e747c82b3</citedby><cites>FETCH-LOGICAL-c525t-ef7b9bba44158828e6acf00843d74f16ae4908c2229c75f13b0a2f72e747c82b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24605967$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Yue</creatorcontrib><creatorcontrib>Herring, Amy H.</creatorcontrib><creatorcontrib>Zhou, Haibo</creatorcontrib><creatorcontrib>Ali, Mirza W.</creatorcontrib><creatorcontrib>Koch, Gary G.</creatorcontrib><title>A Multiple Imputation Method for Sensitivity Analyses of Time-to-Event Data with Possibly Informative Censoring</title><title>Journal of biopharmaceutical statistics</title><addtitle>J Biopharm Stat</addtitle><description>This article presents a multiple imputation method for sensitivity analyses of time-to-event data with possibly informative censoring. The imputed time for censored values is drawn from the failure time distribution conditional on the time of follow-up discontinuation. A variety of specifications regarding the post-discontinuation tendency of having events can be incorporated in the imputation through a hazard ratio parameter for discontinuation versus continuation of follow-up. Multiple-imputed data sets are analyzed with the primary analysis method, and the results are then combined using the methods of Rubin. An illustrative example is provided.</description><subject>Clinical Trials as Topic - statistics &amp; numerical data</subject><subject>Data Interpretation, Statistical</subject><subject>Failure times</subject><subject>Follow-Up Studies</subject><subject>Hazards</subject><subject>Humans</subject><subject>Information</subject><subject>Kaplan-Meier Estimate</subject><subject>Multiple imputation</subject><subject>Sensitivity analysis</subject><subject>Specifications</subject><subject>Statistics</subject><subject>Time Factors</subject><subject>Time-to-event data</subject><subject>Withholding Treatment - statistics &amp; numerical data</subject><issn>1054-3406</issn><issn>1520-5711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkV1rFDEUhgdRbK3-A5GAN97MepLJ19woy1p1oUXBeh0ys0k3JTNZk8yW-fdm3baoFyK5SCDPeXNynqp6iWGBQcJbDIw2FPiCAG4WkoPg7aPqFDMCNRMYPy7ngtQH5qR6ltINAGZC0qfVCaEcWMvFaRWW6HLy2e28QethN2WdXRjRpcnbsEE2RPTNjMllt3d5RstR-zmZhIJFV24wdQ71-d6MGX3QWaNbl7foa0jJdX5G67GUDyVvb9CqhIToxuvn1ROrfTIv7vaz6vvH86vV5_riy6f1anlR94ywXBsrurbrNKWYSUmk4bq3AJI2G0Et5trQFmRPCGl7wSxuOtDECmIEFb0kXXNWvTvm7qZuMJu-9Bi1V7voBh1nFbRTf96Mbquuw15RgFZQXALe3AXE8GMyKavBpd54r0cTpqQOc2655Iz8Bwq8_KNIKejrv9CbMMUy1V9USzCUVSh6pPpYhhmNfegbgzrIV_fy1UG-OsovZa9-__ND0b3tArw_Au6o5jZEv1FZzz5EG_XYu6Safz7xE_8-vo0</recordid><startdate>20140304</startdate><enddate>20140304</enddate><creator>Zhao, Yue</creator><creator>Herring, Amy H.</creator><creator>Zhou, Haibo</creator><creator>Ali, Mirza W.</creator><creator>Koch, Gary G.</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>5PM</scope></search><sort><creationdate>20140304</creationdate><title>A Multiple Imputation Method for Sensitivity Analyses of Time-to-Event Data with Possibly Informative Censoring</title><author>Zhao, Yue ; Herring, Amy H. ; Zhou, Haibo ; Ali, Mirza W. ; Koch, Gary G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-ef7b9bba44158828e6acf00843d74f16ae4908c2229c75f13b0a2f72e747c82b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Clinical Trials as Topic - statistics &amp; numerical data</topic><topic>Data Interpretation, Statistical</topic><topic>Failure times</topic><topic>Follow-Up Studies</topic><topic>Hazards</topic><topic>Humans</topic><topic>Information</topic><topic>Kaplan-Meier Estimate</topic><topic>Multiple imputation</topic><topic>Sensitivity analysis</topic><topic>Specifications</topic><topic>Statistics</topic><topic>Time Factors</topic><topic>Time-to-event data</topic><topic>Withholding Treatment - statistics &amp; numerical data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yue</creatorcontrib><creatorcontrib>Herring, Amy H.</creatorcontrib><creatorcontrib>Zhou, Haibo</creatorcontrib><creatorcontrib>Ali, Mirza W.</creatorcontrib><creatorcontrib>Koch, Gary G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of biopharmaceutical statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yue</au><au>Herring, Amy H.</au><au>Zhou, Haibo</au><au>Ali, Mirza W.</au><au>Koch, Gary G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multiple Imputation Method for Sensitivity Analyses of Time-to-Event Data with Possibly Informative Censoring</atitle><jtitle>Journal of biopharmaceutical statistics</jtitle><addtitle>J Biopharm Stat</addtitle><date>2014-03-04</date><risdate>2014</risdate><volume>24</volume><issue>2</issue><spage>229</spage><epage>253</epage><pages>229-253</pages><issn>1054-3406</issn><eissn>1520-5711</eissn><abstract>This article presents a multiple imputation method for sensitivity analyses of time-to-event data with possibly informative censoring. The imputed time for censored values is drawn from the failure time distribution conditional on the time of follow-up discontinuation. A variety of specifications regarding the post-discontinuation tendency of having events can be incorporated in the imputation through a hazard ratio parameter for discontinuation versus continuation of follow-up. Multiple-imputed data sets are analyzed with the primary analysis method, and the results are then combined using the methods of Rubin. An illustrative example is provided.</abstract><cop>England</cop><pub>Taylor &amp; Francis Group</pub><pmid>24605967</pmid><doi>10.1080/10543406.2013.860769</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1054-3406
ispartof Journal of biopharmaceutical statistics, 2014-03, Vol.24 (2), p.229-253
issn 1054-3406
1520-5711
language eng
recordid cdi_crossref_primary_10_1080_10543406_2013_860769
source MEDLINE; EBSCOhost Business Source Complete
subjects Clinical Trials as Topic - statistics & numerical data
Data Interpretation, Statistical
Failure times
Follow-Up Studies
Hazards
Humans
Information
Kaplan-Meier Estimate
Multiple imputation
Sensitivity analysis
Specifications
Statistics
Time Factors
Time-to-event data
Withholding Treatment - statistics & numerical data
title A Multiple Imputation Method for Sensitivity Analyses of Time-to-Event Data with Possibly Informative Censoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T05%3A07%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multiple%20Imputation%20Method%20for%20Sensitivity%20Analyses%20of%20Time-to-Event%20Data%20with%20Possibly%20Informative%20Censoring&rft.jtitle=Journal%20of%20biopharmaceutical%20statistics&rft.au=Zhao,%20Yue&rft.date=2014-03-04&rft.volume=24&rft.issue=2&rft.spage=229&rft.epage=253&rft.pages=229-253&rft.issn=1054-3406&rft.eissn=1520-5711&rft_id=info:doi/10.1080/10543406.2013.860769&rft_dat=%3Cproquest_cross%3E1520968652%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1509210101&rft_id=info:pmid/24605967&rfr_iscdi=true