FINDING LEAST SQUARES LINES WITH MATHEMATICA

A detailed study of least squares lines reveals that there are several cases to consider. There are three "close fitting lines", they minimize of the sum of the squares of the vertical distances, horizontal distances, and orthogonal distances, respectively. Students are interested in explo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PRIMUS : problems, resources, and issues in mathematics undergraduate studies resources, and issues in mathematics undergraduate studies, 1991-01, Vol.1 (1), p.103-111
1. Verfasser: Mathews, John H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 111
container_issue 1
container_start_page 103
container_title PRIMUS : problems, resources, and issues in mathematics undergraduate studies
container_volume 1
creator Mathews, John H.
description A detailed study of least squares lines reveals that there are several cases to consider. There are three "close fitting lines", they minimize of the sum of the squares of the vertical distances, horizontal distances, and orthogonal distances, respectively. Students are interested in exploring these three cases as a computer laboratory exercise. The software Mathematica can be used to program the numerical computations and obtain the graph of the lines and points. This demonstrates that Mathematica is more than a computer algebra system; it is also a programming language which can be used for teaching numerical analysis.
doi_str_mv 10.1080/10511979108965603
format Article
fullrecord <record><control><sourceid>eric_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10511979108965603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ430487</ericid><sourcerecordid>EJ430487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c234t-6b4e1623fe2d8ea10a03d6eacc4cad5cb158bd8786e816950d6d995e8454f9f63</originalsourceid><addsrcrecordid>eNp1j8tKw0AYhQdRsFYfQHCRBzD6T-fSGXATatpGYkWT4jJM5wKRtJGZQunbOxJxI27-C985Bw5C1xjuMAi4x8AwllMZH8kZB3KCRlgSllJg5DTekadRAOfoIoQPAKBM8BG6nRerx2K1SMo8q-qkel1nb3mVlMUqzveiXibPWb3M4yhm2SU6c6oL9upnj9F6ntezZVq-LCIuUz0hdJ_yDbWYT4izEyOswqCAGG6V1lQrw_QGM7ExYiq4FZhLBoYbKZkVlFEnHSdjhIdc7fsQvHXNp2-3yh8bDM133eZP3ei5GTzWt_pXnz9RAlRMI34YcLtzvd-qQ-870-zVseu982qn29CQ_9O_APAjXpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>FINDING LEAST SQUARES LINES WITH MATHEMATICA</title><source>Taylor &amp; Francis Journals Complete</source><creator>Mathews, John H.</creator><creatorcontrib>Mathews, John H.</creatorcontrib><description>A detailed study of least squares lines reveals that there are several cases to consider. There are three "close fitting lines", they minimize of the sum of the squares of the vertical distances, horizontal distances, and orthogonal distances, respectively. Students are interested in exploring these three cases as a computer laboratory exercise. The software Mathematica can be used to program the numerical computations and obtain the graph of the lines and points. This demonstrates that Mathematica is more than a computer algebra system; it is also a programming language which can be used for teaching numerical analysis.</description><identifier>ISSN: 1051-1970</identifier><identifier>EISSN: 1935-4053</identifier><identifier>DOI: 10.1080/10511979108965603</identifier><language>eng</language><publisher>Taylor &amp; Francis Group</publisher><subject>College Mathematics ; Computer Assisted Instruction ; Educational Technology ; Higher Education ; Instructional Techniques ; Least squares lines ; line of regression ; Mathematica ; Mathematica Computer Program ; Mathematical Formulas ; Mathematics Education ; Mathematics Instruction ; Numerical Analysis ; orthogonal line of regression ; Postsecondary Education ; Problem Solving ; Teaching Methods</subject><ispartof>PRIMUS : problems, resources, and issues in mathematics undergraduate studies, 1991-01, Vol.1 (1), p.103-111</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1991</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c234t-6b4e1623fe2d8ea10a03d6eacc4cad5cb158bd8786e816950d6d995e8454f9f63</citedby><cites>FETCH-LOGICAL-c234t-6b4e1623fe2d8ea10a03d6eacc4cad5cb158bd8786e816950d6d995e8454f9f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/10511979108965603$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/10511979108965603$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,59647,60436</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ430487$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Mathews, John H.</creatorcontrib><title>FINDING LEAST SQUARES LINES WITH MATHEMATICA</title><title>PRIMUS : problems, resources, and issues in mathematics undergraduate studies</title><description>A detailed study of least squares lines reveals that there are several cases to consider. There are three "close fitting lines", they minimize of the sum of the squares of the vertical distances, horizontal distances, and orthogonal distances, respectively. Students are interested in exploring these three cases as a computer laboratory exercise. The software Mathematica can be used to program the numerical computations and obtain the graph of the lines and points. This demonstrates that Mathematica is more than a computer algebra system; it is also a programming language which can be used for teaching numerical analysis.</description><subject>College Mathematics</subject><subject>Computer Assisted Instruction</subject><subject>Educational Technology</subject><subject>Higher Education</subject><subject>Instructional Techniques</subject><subject>Least squares lines</subject><subject>line of regression</subject><subject>Mathematica</subject><subject>Mathematica Computer Program</subject><subject>Mathematical Formulas</subject><subject>Mathematics Education</subject><subject>Mathematics Instruction</subject><subject>Numerical Analysis</subject><subject>orthogonal line of regression</subject><subject>Postsecondary Education</subject><subject>Problem Solving</subject><subject>Teaching Methods</subject><issn>1051-1970</issn><issn>1935-4053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNp1j8tKw0AYhQdRsFYfQHCRBzD6T-fSGXATatpGYkWT4jJM5wKRtJGZQunbOxJxI27-C985Bw5C1xjuMAi4x8AwllMZH8kZB3KCRlgSllJg5DTekadRAOfoIoQPAKBM8BG6nRerx2K1SMo8q-qkel1nb3mVlMUqzveiXibPWb3M4yhm2SU6c6oL9upnj9F6ntezZVq-LCIuUz0hdJ_yDbWYT4izEyOswqCAGG6V1lQrw_QGM7ExYiq4FZhLBoYbKZkVlFEnHSdjhIdc7fsQvHXNp2-3yh8bDM133eZP3ei5GTzWt_pXnz9RAlRMI34YcLtzvd-qQ-870-zVseu982qn29CQ_9O_APAjXpQ</recordid><startdate>19910101</startdate><enddate>19910101</enddate><creator>Mathews, John H.</creator><general>Taylor &amp; Francis Group</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19910101</creationdate><title>FINDING LEAST SQUARES LINES WITH MATHEMATICA</title><author>Mathews, John H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c234t-6b4e1623fe2d8ea10a03d6eacc4cad5cb158bd8786e816950d6d995e8454f9f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>College Mathematics</topic><topic>Computer Assisted Instruction</topic><topic>Educational Technology</topic><topic>Higher Education</topic><topic>Instructional Techniques</topic><topic>Least squares lines</topic><topic>line of regression</topic><topic>Mathematica</topic><topic>Mathematica Computer Program</topic><topic>Mathematical Formulas</topic><topic>Mathematics Education</topic><topic>Mathematics Instruction</topic><topic>Numerical Analysis</topic><topic>orthogonal line of regression</topic><topic>Postsecondary Education</topic><topic>Problem Solving</topic><topic>Teaching Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mathews, John H.</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><jtitle>PRIMUS : problems, resources, and issues in mathematics undergraduate studies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mathews, John H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ430487</ericid><atitle>FINDING LEAST SQUARES LINES WITH MATHEMATICA</atitle><jtitle>PRIMUS : problems, resources, and issues in mathematics undergraduate studies</jtitle><date>1991-01-01</date><risdate>1991</risdate><volume>1</volume><issue>1</issue><spage>103</spage><epage>111</epage><pages>103-111</pages><issn>1051-1970</issn><eissn>1935-4053</eissn><abstract>A detailed study of least squares lines reveals that there are several cases to consider. There are three "close fitting lines", they minimize of the sum of the squares of the vertical distances, horizontal distances, and orthogonal distances, respectively. Students are interested in exploring these three cases as a computer laboratory exercise. The software Mathematica can be used to program the numerical computations and obtain the graph of the lines and points. This demonstrates that Mathematica is more than a computer algebra system; it is also a programming language which can be used for teaching numerical analysis.</abstract><pub>Taylor &amp; Francis Group</pub><doi>10.1080/10511979108965603</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1051-1970
ispartof PRIMUS : problems, resources, and issues in mathematics undergraduate studies, 1991-01, Vol.1 (1), p.103-111
issn 1051-1970
1935-4053
language eng
recordid cdi_crossref_primary_10_1080_10511979108965603
source Taylor & Francis Journals Complete
subjects College Mathematics
Computer Assisted Instruction
Educational Technology
Higher Education
Instructional Techniques
Least squares lines
line of regression
Mathematica
Mathematica Computer Program
Mathematical Formulas
Mathematics Education
Mathematics Instruction
Numerical Analysis
orthogonal line of regression
Postsecondary Education
Problem Solving
Teaching Methods
title FINDING LEAST SQUARES LINES WITH MATHEMATICA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A33%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-eric_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FINDING%20LEAST%20SQUARES%20LINES%20WITH%20MATHEMATICA&rft.jtitle=PRIMUS%20:%20problems,%20resources,%20and%20issues%20in%20mathematics%20undergraduate%20studies&rft.au=Mathews,%20John%20H.&rft.date=1991-01-01&rft.volume=1&rft.issue=1&rft.spage=103&rft.epage=111&rft.pages=103-111&rft.issn=1051-1970&rft.eissn=1935-4053&rft_id=info:doi/10.1080/10511979108965603&rft_dat=%3Ceric_cross%3EEJ430487%3C/eric_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ericid=EJ430487&rfr_iscdi=true