FINDING LEAST SQUARES LINES WITH MATHEMATICA
A detailed study of least squares lines reveals that there are several cases to consider. There are three "close fitting lines", they minimize of the sum of the squares of the vertical distances, horizontal distances, and orthogonal distances, respectively. Students are interested in explo...
Gespeichert in:
Veröffentlicht in: | PRIMUS : problems, resources, and issues in mathematics undergraduate studies resources, and issues in mathematics undergraduate studies, 1991-01, Vol.1 (1), p.103-111 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 111 |
---|---|
container_issue | 1 |
container_start_page | 103 |
container_title | PRIMUS : problems, resources, and issues in mathematics undergraduate studies |
container_volume | 1 |
creator | Mathews, John H. |
description | A detailed study of least squares lines reveals that there are several cases to consider. There are three "close fitting lines", they minimize of the sum of the squares of the vertical distances, horizontal distances, and orthogonal distances, respectively. Students are interested in exploring these three cases as a computer laboratory exercise. The software Mathematica can be used to program the numerical computations and obtain the graph of the lines and points. This demonstrates that Mathematica is more than a computer algebra system; it is also a programming language which can be used for teaching numerical analysis. |
doi_str_mv | 10.1080/10511979108965603 |
format | Article |
fullrecord | <record><control><sourceid>eric_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10511979108965603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ430487</ericid><sourcerecordid>EJ430487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c234t-6b4e1623fe2d8ea10a03d6eacc4cad5cb158bd8786e816950d6d995e8454f9f63</originalsourceid><addsrcrecordid>eNp1j8tKw0AYhQdRsFYfQHCRBzD6T-fSGXATatpGYkWT4jJM5wKRtJGZQunbOxJxI27-C985Bw5C1xjuMAi4x8AwllMZH8kZB3KCRlgSllJg5DTekadRAOfoIoQPAKBM8BG6nRerx2K1SMo8q-qkel1nb3mVlMUqzveiXibPWb3M4yhm2SU6c6oL9upnj9F6ntezZVq-LCIuUz0hdJ_yDbWYT4izEyOswqCAGG6V1lQrw_QGM7ExYiq4FZhLBoYbKZkVlFEnHSdjhIdc7fsQvHXNp2-3yh8bDM133eZP3ei5GTzWt_pXnz9RAlRMI34YcLtzvd-qQ-870-zVseu982qn29CQ_9O_APAjXpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>FINDING LEAST SQUARES LINES WITH MATHEMATICA</title><source>Taylor & Francis Journals Complete</source><creator>Mathews, John H.</creator><creatorcontrib>Mathews, John H.</creatorcontrib><description>A detailed study of least squares lines reveals that there are several cases to consider. There are three "close fitting lines", they minimize of the sum of the squares of the vertical distances, horizontal distances, and orthogonal distances, respectively. Students are interested in exploring these three cases as a computer laboratory exercise. The software Mathematica can be used to program the numerical computations and obtain the graph of the lines and points. This demonstrates that Mathematica is more than a computer algebra system; it is also a programming language which can be used for teaching numerical analysis.</description><identifier>ISSN: 1051-1970</identifier><identifier>EISSN: 1935-4053</identifier><identifier>DOI: 10.1080/10511979108965603</identifier><language>eng</language><publisher>Taylor & Francis Group</publisher><subject>College Mathematics ; Computer Assisted Instruction ; Educational Technology ; Higher Education ; Instructional Techniques ; Least squares lines ; line of regression ; Mathematica ; Mathematica Computer Program ; Mathematical Formulas ; Mathematics Education ; Mathematics Instruction ; Numerical Analysis ; orthogonal line of regression ; Postsecondary Education ; Problem Solving ; Teaching Methods</subject><ispartof>PRIMUS : problems, resources, and issues in mathematics undergraduate studies, 1991-01, Vol.1 (1), p.103-111</ispartof><rights>Copyright Taylor & Francis Group, LLC 1991</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c234t-6b4e1623fe2d8ea10a03d6eacc4cad5cb158bd8786e816950d6d995e8454f9f63</citedby><cites>FETCH-LOGICAL-c234t-6b4e1623fe2d8ea10a03d6eacc4cad5cb158bd8786e816950d6d995e8454f9f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/10511979108965603$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/10511979108965603$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,59647,60436</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ430487$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Mathews, John H.</creatorcontrib><title>FINDING LEAST SQUARES LINES WITH MATHEMATICA</title><title>PRIMUS : problems, resources, and issues in mathematics undergraduate studies</title><description>A detailed study of least squares lines reveals that there are several cases to consider. There are three "close fitting lines", they minimize of the sum of the squares of the vertical distances, horizontal distances, and orthogonal distances, respectively. Students are interested in exploring these three cases as a computer laboratory exercise. The software Mathematica can be used to program the numerical computations and obtain the graph of the lines and points. This demonstrates that Mathematica is more than a computer algebra system; it is also a programming language which can be used for teaching numerical analysis.</description><subject>College Mathematics</subject><subject>Computer Assisted Instruction</subject><subject>Educational Technology</subject><subject>Higher Education</subject><subject>Instructional Techniques</subject><subject>Least squares lines</subject><subject>line of regression</subject><subject>Mathematica</subject><subject>Mathematica Computer Program</subject><subject>Mathematical Formulas</subject><subject>Mathematics Education</subject><subject>Mathematics Instruction</subject><subject>Numerical Analysis</subject><subject>orthogonal line of regression</subject><subject>Postsecondary Education</subject><subject>Problem Solving</subject><subject>Teaching Methods</subject><issn>1051-1970</issn><issn>1935-4053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNp1j8tKw0AYhQdRsFYfQHCRBzD6T-fSGXATatpGYkWT4jJM5wKRtJGZQunbOxJxI27-C985Bw5C1xjuMAi4x8AwllMZH8kZB3KCRlgSllJg5DTekadRAOfoIoQPAKBM8BG6nRerx2K1SMo8q-qkel1nb3mVlMUqzveiXibPWb3M4yhm2SU6c6oL9upnj9F6ntezZVq-LCIuUz0hdJ_yDbWYT4izEyOswqCAGG6V1lQrw_QGM7ExYiq4FZhLBoYbKZkVlFEnHSdjhIdc7fsQvHXNp2-3yh8bDM133eZP3ei5GTzWt_pXnz9RAlRMI34YcLtzvd-qQ-870-zVseu982qn29CQ_9O_APAjXpQ</recordid><startdate>19910101</startdate><enddate>19910101</enddate><creator>Mathews, John H.</creator><general>Taylor & Francis Group</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19910101</creationdate><title>FINDING LEAST SQUARES LINES WITH MATHEMATICA</title><author>Mathews, John H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c234t-6b4e1623fe2d8ea10a03d6eacc4cad5cb158bd8786e816950d6d995e8454f9f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>College Mathematics</topic><topic>Computer Assisted Instruction</topic><topic>Educational Technology</topic><topic>Higher Education</topic><topic>Instructional Techniques</topic><topic>Least squares lines</topic><topic>line of regression</topic><topic>Mathematica</topic><topic>Mathematica Computer Program</topic><topic>Mathematical Formulas</topic><topic>Mathematics Education</topic><topic>Mathematics Instruction</topic><topic>Numerical Analysis</topic><topic>orthogonal line of regression</topic><topic>Postsecondary Education</topic><topic>Problem Solving</topic><topic>Teaching Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mathews, John H.</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><jtitle>PRIMUS : problems, resources, and issues in mathematics undergraduate studies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mathews, John H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ430487</ericid><atitle>FINDING LEAST SQUARES LINES WITH MATHEMATICA</atitle><jtitle>PRIMUS : problems, resources, and issues in mathematics undergraduate studies</jtitle><date>1991-01-01</date><risdate>1991</risdate><volume>1</volume><issue>1</issue><spage>103</spage><epage>111</epage><pages>103-111</pages><issn>1051-1970</issn><eissn>1935-4053</eissn><abstract>A detailed study of least squares lines reveals that there are several cases to consider. There are three "close fitting lines", they minimize of the sum of the squares of the vertical distances, horizontal distances, and orthogonal distances, respectively. Students are interested in exploring these three cases as a computer laboratory exercise. The software Mathematica can be used to program the numerical computations and obtain the graph of the lines and points. This demonstrates that Mathematica is more than a computer algebra system; it is also a programming language which can be used for teaching numerical analysis.</abstract><pub>Taylor & Francis Group</pub><doi>10.1080/10511979108965603</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1051-1970 |
ispartof | PRIMUS : problems, resources, and issues in mathematics undergraduate studies, 1991-01, Vol.1 (1), p.103-111 |
issn | 1051-1970 1935-4053 |
language | eng |
recordid | cdi_crossref_primary_10_1080_10511979108965603 |
source | Taylor & Francis Journals Complete |
subjects | College Mathematics Computer Assisted Instruction Educational Technology Higher Education Instructional Techniques Least squares lines line of regression Mathematica Mathematica Computer Program Mathematical Formulas Mathematics Education Mathematics Instruction Numerical Analysis orthogonal line of regression Postsecondary Education Problem Solving Teaching Methods |
title | FINDING LEAST SQUARES LINES WITH MATHEMATICA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A33%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-eric_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FINDING%20LEAST%20SQUARES%20LINES%20WITH%20MATHEMATICA&rft.jtitle=PRIMUS%20:%20problems,%20resources,%20and%20issues%20in%20mathematics%20undergraduate%20studies&rft.au=Mathews,%20John%20H.&rft.date=1991-01-01&rft.volume=1&rft.issue=1&rft.spage=103&rft.epage=111&rft.pages=103-111&rft.issn=1051-1970&rft.eissn=1935-4053&rft_id=info:doi/10.1080/10511979108965603&rft_dat=%3Ceric_cross%3EEJ430487%3C/eric_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ericid=EJ430487&rfr_iscdi=true |