Localpiecewise linear regression
In this paper, we propose a new nonparametric estimator called the local piecewise linear regression estimator. The proposed estimator has the advantages of the regression spline and the local linear regression estimator but overcomes the drawbacks of both. Here we study the asymptotic behavior of t...
Gespeichert in:
Veröffentlicht in: | Journal of nonparametric statistics 1999-01, Vol.12 (1), p.63-75 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 75 |
---|---|
container_issue | 1 |
container_start_page | 63 |
container_title | Journal of nonparametric statistics |
container_volume | 12 |
creator | Zhou, Shanggang Wolfe, Douglas A. |
description | In this paper, we propose a new nonparametric estimator called the local piecewise linear regression estimator. The proposed estimator has the advantages of the regression spline and the local linear regression estimator but overcomes the drawbacks of both. Here we study the asymptotic behavior of the proposed estimator. Under suitable conditions, we derive the leading bias and variance terms of the local piecewise linear regression estimator at the interior and boundary points for both the fixed design and the random design. As a result, we are able to see clearly many optimal properties of the local piecewise linear regression estimator. For example, the proposed estimator is efficient, designadaptive and computationally inexpensive, and it suffers no boundary effects. |
doi_str_mv | 10.1080/10485259908832800 |
format | Article |
fullrecord | <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10485259908832800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_10485259908832800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1430-937e1710adfda8ee8c377f7bd773a929c74e8fbdf265954816be8089533a9cc73</originalsourceid><addsrcrecordid>eNqFz8FKxDAQBuAgCq6rD-CtL1CdSdomAS-yqCsUvOg5pOlEIt1mSQrrvr1d1tsinmZg5pvhZ-wW4Q5BwT1CpWpeaw1KCa4AztgCgesSBOL5oa9UOS_wS3aV8xcAikbAghVtdHbYBnK0C5mKIYxkU5HoM1HOIY7X7MLbIdPNb12yj-en99W6bN9eXlePbemwElBqIQklgu19bxWRckJKL7teSmE1105WpHzXe97Uuq4UNh0pULoW89g5KZYMj3ddijkn8mabwsamvUEwh4jmJOJs5NGE0ce0sbuYht5Mdj_E5JMdXcinykzf0ywf_pXi78c_HlBn-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Localpiecewise linear regression</title><source>Taylor & Francis Online</source><creator>Zhou, Shanggang ; Wolfe, Douglas A.</creator><creatorcontrib>Zhou, Shanggang ; Wolfe, Douglas A.</creatorcontrib><description>In this paper, we propose a new nonparametric estimator called the local piecewise linear regression estimator. The proposed estimator has the advantages of the regression spline and the local linear regression estimator but overcomes the drawbacks of both. Here we study the asymptotic behavior of the proposed estimator. Under suitable conditions, we derive the leading bias and variance terms of the local piecewise linear regression estimator at the interior and boundary points for both the fixed design and the random design. As a result, we are able to see clearly many optimal properties of the local piecewise linear regression estimator. For example, the proposed estimator is efficient, designadaptive and computationally inexpensive, and it suffers no boundary effects.</description><identifier>ISSN: 1048-5252</identifier><identifier>EISSN: 1029-0311</identifier><identifier>DOI: 10.1080/10485259908832800</identifier><language>eng</language><publisher>Gordon and Breach Science Publishers</publisher><subject>asymptotic bias ; asymptotic variance ; boundary effects ; kernel estimator ; Local piecewise linear regression ; local polynomial regression ; regression spline</subject><ispartof>Journal of nonparametric statistics, 1999-01, Vol.12 (1), p.63-75</ispartof><rights>Copyright Taylor & Francis Group, LLC 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1430-937e1710adfda8ee8c377f7bd773a929c74e8fbdf265954816be8089533a9cc73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/10485259908832800$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/10485259908832800$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids></links><search><creatorcontrib>Zhou, Shanggang</creatorcontrib><creatorcontrib>Wolfe, Douglas A.</creatorcontrib><title>Localpiecewise linear regression</title><title>Journal of nonparametric statistics</title><description>In this paper, we propose a new nonparametric estimator called the local piecewise linear regression estimator. The proposed estimator has the advantages of the regression spline and the local linear regression estimator but overcomes the drawbacks of both. Here we study the asymptotic behavior of the proposed estimator. Under suitable conditions, we derive the leading bias and variance terms of the local piecewise linear regression estimator at the interior and boundary points for both the fixed design and the random design. As a result, we are able to see clearly many optimal properties of the local piecewise linear regression estimator. For example, the proposed estimator is efficient, designadaptive and computationally inexpensive, and it suffers no boundary effects.</description><subject>asymptotic bias</subject><subject>asymptotic variance</subject><subject>boundary effects</subject><subject>kernel estimator</subject><subject>Local piecewise linear regression</subject><subject>local polynomial regression</subject><subject>regression spline</subject><issn>1048-5252</issn><issn>1029-0311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFz8FKxDAQBuAgCq6rD-CtL1CdSdomAS-yqCsUvOg5pOlEIt1mSQrrvr1d1tsinmZg5pvhZ-wW4Q5BwT1CpWpeaw1KCa4AztgCgesSBOL5oa9UOS_wS3aV8xcAikbAghVtdHbYBnK0C5mKIYxkU5HoM1HOIY7X7MLbIdPNb12yj-en99W6bN9eXlePbemwElBqIQklgu19bxWRckJKL7teSmE1105WpHzXe97Uuq4UNh0pULoW89g5KZYMj3ddijkn8mabwsamvUEwh4jmJOJs5NGE0ce0sbuYht5Mdj_E5JMdXcinykzf0ywf_pXi78c_HlBn-A</recordid><startdate>19990101</startdate><enddate>19990101</enddate><creator>Zhou, Shanggang</creator><creator>Wolfe, Douglas A.</creator><general>Gordon and Breach Science Publishers</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19990101</creationdate><title>Localpiecewise linear regression</title><author>Zhou, Shanggang ; Wolfe, Douglas A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1430-937e1710adfda8ee8c377f7bd773a929c74e8fbdf265954816be8089533a9cc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>asymptotic bias</topic><topic>asymptotic variance</topic><topic>boundary effects</topic><topic>kernel estimator</topic><topic>Local piecewise linear regression</topic><topic>local polynomial regression</topic><topic>regression spline</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Shanggang</creatorcontrib><creatorcontrib>Wolfe, Douglas A.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of nonparametric statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Shanggang</au><au>Wolfe, Douglas A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Localpiecewise linear regression</atitle><jtitle>Journal of nonparametric statistics</jtitle><date>1999-01-01</date><risdate>1999</risdate><volume>12</volume><issue>1</issue><spage>63</spage><epage>75</epage><pages>63-75</pages><issn>1048-5252</issn><eissn>1029-0311</eissn><abstract>In this paper, we propose a new nonparametric estimator called the local piecewise linear regression estimator. The proposed estimator has the advantages of the regression spline and the local linear regression estimator but overcomes the drawbacks of both. Here we study the asymptotic behavior of the proposed estimator. Under suitable conditions, we derive the leading bias and variance terms of the local piecewise linear regression estimator at the interior and boundary points for both the fixed design and the random design. As a result, we are able to see clearly many optimal properties of the local piecewise linear regression estimator. For example, the proposed estimator is efficient, designadaptive and computationally inexpensive, and it suffers no boundary effects.</abstract><pub>Gordon and Breach Science Publishers</pub><doi>10.1080/10485259908832800</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1048-5252 |
ispartof | Journal of nonparametric statistics, 1999-01, Vol.12 (1), p.63-75 |
issn | 1048-5252 1029-0311 |
language | eng |
recordid | cdi_crossref_primary_10_1080_10485259908832800 |
source | Taylor & Francis Online |
subjects | asymptotic bias asymptotic variance boundary effects kernel estimator Local piecewise linear regression local polynomial regression regression spline |
title | Localpiecewise linear regression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T11%3A42%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Localpiecewise%20linear%20regression&rft.jtitle=Journal%20of%20nonparametric%20statistics&rft.au=Zhou,%20Shanggang&rft.date=1999-01-01&rft.volume=12&rft.issue=1&rft.spage=63&rft.epage=75&rft.pages=63-75&rft.issn=1048-5252&rft.eissn=1029-0311&rft_id=info:doi/10.1080/10485259908832800&rft_dat=%3Ccrossref_infor%3E10_1080_10485259908832800%3C/crossref_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |