Localpiecewise linear regression

In this paper, we propose a new nonparametric estimator called the local piecewise linear regression estimator. The proposed estimator has the advantages of the regression spline and the local linear regression estimator but overcomes the drawbacks of both. Here we study the asymptotic behavior of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nonparametric statistics 1999-01, Vol.12 (1), p.63-75
Hauptverfasser: Zhou, Shanggang, Wolfe, Douglas A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 75
container_issue 1
container_start_page 63
container_title Journal of nonparametric statistics
container_volume 12
creator Zhou, Shanggang
Wolfe, Douglas A.
description In this paper, we propose a new nonparametric estimator called the local piecewise linear regression estimator. The proposed estimator has the advantages of the regression spline and the local linear regression estimator but overcomes the drawbacks of both. Here we study the asymptotic behavior of the proposed estimator. Under suitable conditions, we derive the leading bias and variance terms of the local piecewise linear regression estimator at the interior and boundary points for both the fixed design and the random design. As a result, we are able to see clearly many optimal properties of the local piecewise linear regression estimator. For example, the proposed estimator is efficient, designadaptive and computationally inexpensive, and it suffers no boundary effects.
doi_str_mv 10.1080/10485259908832800
format Article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10485259908832800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_10485259908832800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1430-937e1710adfda8ee8c377f7bd773a929c74e8fbdf265954816be8089533a9cc73</originalsourceid><addsrcrecordid>eNqFz8FKxDAQBuAgCq6rD-CtL1CdSdomAS-yqCsUvOg5pOlEIt1mSQrrvr1d1tsinmZg5pvhZ-wW4Q5BwT1CpWpeaw1KCa4AztgCgesSBOL5oa9UOS_wS3aV8xcAikbAghVtdHbYBnK0C5mKIYxkU5HoM1HOIY7X7MLbIdPNb12yj-en99W6bN9eXlePbemwElBqIQklgu19bxWRckJKL7teSmE1105WpHzXe97Uuq4UNh0pULoW89g5KZYMj3ddijkn8mabwsamvUEwh4jmJOJs5NGE0ce0sbuYht5Mdj_E5JMdXcinykzf0ywf_pXi78c_HlBn-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Localpiecewise linear regression</title><source>Taylor &amp; Francis Online</source><creator>Zhou, Shanggang ; Wolfe, Douglas A.</creator><creatorcontrib>Zhou, Shanggang ; Wolfe, Douglas A.</creatorcontrib><description>In this paper, we propose a new nonparametric estimator called the local piecewise linear regression estimator. The proposed estimator has the advantages of the regression spline and the local linear regression estimator but overcomes the drawbacks of both. Here we study the asymptotic behavior of the proposed estimator. Under suitable conditions, we derive the leading bias and variance terms of the local piecewise linear regression estimator at the interior and boundary points for both the fixed design and the random design. As a result, we are able to see clearly many optimal properties of the local piecewise linear regression estimator. For example, the proposed estimator is efficient, designadaptive and computationally inexpensive, and it suffers no boundary effects.</description><identifier>ISSN: 1048-5252</identifier><identifier>EISSN: 1029-0311</identifier><identifier>DOI: 10.1080/10485259908832800</identifier><language>eng</language><publisher>Gordon and Breach Science Publishers</publisher><subject>asymptotic bias ; asymptotic variance ; boundary effects ; kernel estimator ; Local piecewise linear regression ; local polynomial regression ; regression spline</subject><ispartof>Journal of nonparametric statistics, 1999-01, Vol.12 (1), p.63-75</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1430-937e1710adfda8ee8c377f7bd773a929c74e8fbdf265954816be8089533a9cc73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/10485259908832800$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/10485259908832800$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids></links><search><creatorcontrib>Zhou, Shanggang</creatorcontrib><creatorcontrib>Wolfe, Douglas A.</creatorcontrib><title>Localpiecewise linear regression</title><title>Journal of nonparametric statistics</title><description>In this paper, we propose a new nonparametric estimator called the local piecewise linear regression estimator. The proposed estimator has the advantages of the regression spline and the local linear regression estimator but overcomes the drawbacks of both. Here we study the asymptotic behavior of the proposed estimator. Under suitable conditions, we derive the leading bias and variance terms of the local piecewise linear regression estimator at the interior and boundary points for both the fixed design and the random design. As a result, we are able to see clearly many optimal properties of the local piecewise linear regression estimator. For example, the proposed estimator is efficient, designadaptive and computationally inexpensive, and it suffers no boundary effects.</description><subject>asymptotic bias</subject><subject>asymptotic variance</subject><subject>boundary effects</subject><subject>kernel estimator</subject><subject>Local piecewise linear regression</subject><subject>local polynomial regression</subject><subject>regression spline</subject><issn>1048-5252</issn><issn>1029-0311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFz8FKxDAQBuAgCq6rD-CtL1CdSdomAS-yqCsUvOg5pOlEIt1mSQrrvr1d1tsinmZg5pvhZ-wW4Q5BwT1CpWpeaw1KCa4AztgCgesSBOL5oa9UOS_wS3aV8xcAikbAghVtdHbYBnK0C5mKIYxkU5HoM1HOIY7X7MLbIdPNb12yj-en99W6bN9eXlePbemwElBqIQklgu19bxWRckJKL7teSmE1105WpHzXe97Uuq4UNh0pULoW89g5KZYMj3ddijkn8mabwsamvUEwh4jmJOJs5NGE0ce0sbuYht5Mdj_E5JMdXcinykzf0ywf_pXi78c_HlBn-A</recordid><startdate>19990101</startdate><enddate>19990101</enddate><creator>Zhou, Shanggang</creator><creator>Wolfe, Douglas A.</creator><general>Gordon and Breach Science Publishers</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19990101</creationdate><title>Localpiecewise linear regression</title><author>Zhou, Shanggang ; Wolfe, Douglas A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1430-937e1710adfda8ee8c377f7bd773a929c74e8fbdf265954816be8089533a9cc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>asymptotic bias</topic><topic>asymptotic variance</topic><topic>boundary effects</topic><topic>kernel estimator</topic><topic>Local piecewise linear regression</topic><topic>local polynomial regression</topic><topic>regression spline</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Shanggang</creatorcontrib><creatorcontrib>Wolfe, Douglas A.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of nonparametric statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Shanggang</au><au>Wolfe, Douglas A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Localpiecewise linear regression</atitle><jtitle>Journal of nonparametric statistics</jtitle><date>1999-01-01</date><risdate>1999</risdate><volume>12</volume><issue>1</issue><spage>63</spage><epage>75</epage><pages>63-75</pages><issn>1048-5252</issn><eissn>1029-0311</eissn><abstract>In this paper, we propose a new nonparametric estimator called the local piecewise linear regression estimator. The proposed estimator has the advantages of the regression spline and the local linear regression estimator but overcomes the drawbacks of both. Here we study the asymptotic behavior of the proposed estimator. Under suitable conditions, we derive the leading bias and variance terms of the local piecewise linear regression estimator at the interior and boundary points for both the fixed design and the random design. As a result, we are able to see clearly many optimal properties of the local piecewise linear regression estimator. For example, the proposed estimator is efficient, designadaptive and computationally inexpensive, and it suffers no boundary effects.</abstract><pub>Gordon and Breach Science Publishers</pub><doi>10.1080/10485259908832800</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1048-5252
ispartof Journal of nonparametric statistics, 1999-01, Vol.12 (1), p.63-75
issn 1048-5252
1029-0311
language eng
recordid cdi_crossref_primary_10_1080_10485259908832800
source Taylor & Francis Online
subjects asymptotic bias
asymptotic variance
boundary effects
kernel estimator
Local piecewise linear regression
local polynomial regression
regression spline
title Localpiecewise linear regression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T11%3A42%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Localpiecewise%20linear%20regression&rft.jtitle=Journal%20of%20nonparametric%20statistics&rft.au=Zhou,%20Shanggang&rft.date=1999-01-01&rft.volume=12&rft.issue=1&rft.spage=63&rft.epage=75&rft.pages=63-75&rft.issn=1048-5252&rft.eissn=1029-0311&rft_id=info:doi/10.1080/10485259908832800&rft_dat=%3Ccrossref_infor%3E10_1080_10485259908832800%3C/crossref_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true