AN ADAPTIVELY REFINED QUADTREE GRID METHOD FOR INCOMPRESSIBLE FLOWS
An adoptively refined quadtree grid method for the numerical solution of the incompressible Navier-Stokes equations is presented. A pressure-based scheme with allocated primitive variables is used as the solution algorithm. A process of grid refinement and flow solution is repeated until a sufficien...
Gespeichert in:
Veröffentlicht in: | Numerical Heat Transfer. Part B, Fundamentals Fundamentals, 1998-12, Vol.34 (4), p.379-400 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 400 |
---|---|
container_issue | 4 |
container_start_page | 379 |
container_title | Numerical Heat Transfer. Part B, Fundamentals |
container_volume | 34 |
creator | Ochs, Stuart S. Ganesh Rajagopalan, R. |
description | An adoptively refined quadtree grid method for the numerical solution of the incompressible Navier-Stokes equations is presented. A pressure-based scheme with allocated primitive variables is used as the solution algorithm. A process of grid refinement and flow solution is repeated until a sufficiently resolved solution is obtained. The present method has been applied to a variety of test cases. The results show that an adoptively refined quadtree grid can yield a better grid distribution over the flow, therefore yielding a more accurate solution as well as an improved convergence rate than a structured grid with a similar number of grid points. |
doi_str_mv | 10.1080/10407799808915064 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10407799808915064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1591740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-3296a76fdfc476b30f78507ad03619caa78dc71da124568050fe760333627ad93</originalsourceid><addsrcrecordid>eNqFkFFLhEAQxyUKuq4-QG8GvVqzru4q9GK63gneeXle0ZNsq5JheuwKdd8-D4seDmpeZmB-vxn4a9olghsEDtwisIBS13XAcZENxDrSJsg2kQHEJMfDPOyNAYBT7UypNxjKwtZE872l7gXeKoseWfyspyyMlizQHzZekKWM6bM0CvQFy-ZJoIdJqkdLP1msUrZeR_cx08M4eVqfaycVb1R58d2n2iZkmT834mQW-V5sCOxavYFNl3BKqqISFiUvGCrq2EB5AZggV3BOnUJQVHBkWjZxwIaqpAQwxsQcKBdPtavxbqf6Olei7kvxKrq2LUWfYzCxCQODRkbITilZVvlW1u9c7nIE-T6p_CCpwbkenS1XgjeV5K2o1a9ou4ha-9N3I1a3VSff-UcnmyLv-a7p5I-D__pC_9UPrLz_7PEXDNWFLw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>AN ADAPTIVELY REFINED QUADTREE GRID METHOD FOR INCOMPRESSIBLE FLOWS</title><source>Taylor & Francis Journals Complete</source><creator>Ochs, Stuart S. ; Ganesh Rajagopalan, R.</creator><creatorcontrib>Ochs, Stuart S. ; Ganesh Rajagopalan, R.</creatorcontrib><description>An adoptively refined quadtree grid method for the numerical solution of the incompressible Navier-Stokes equations is presented. A pressure-based scheme with allocated primitive variables is used as the solution algorithm. A process of grid refinement and flow solution is repeated until a sufficiently resolved solution is obtained. The present method has been applied to a variety of test cases. The results show that an adoptively refined quadtree grid can yield a better grid distribution over the flow, therefore yielding a more accurate solution as well as an improved convergence rate than a structured grid with a similar number of grid points.</description><identifier>ISSN: 1040-7790</identifier><identifier>EISSN: 1521-0626</identifier><identifier>DOI: 10.1080/10407799808915064</identifier><identifier>CODEN: NHBFEE</identifier><language>eng</language><publisher>Philadelphia, PA: Taylor & Francis Group</publisher><subject>Computational methods in fluid dynamics ; ENGINEERING NOT INCLUDED IN OTHER CATEGORIES ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; INCOMPRESSIBLE FLOW ; MESH GENERATION ; NAVIER-STOKES EQUATIONS ; NUMERICAL SOLUTION ; Physics</subject><ispartof>Numerical Heat Transfer. Part B, Fundamentals, 1998-12, Vol.34 (4), p.379-400</ispartof><rights>Copyright Taylor & Francis Group, LLC 1998</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c394t-3296a76fdfc476b30f78507ad03619caa78dc71da124568050fe760333627ad93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/10407799808915064$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/10407799808915064$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,881,27903,27904,59623,60412</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1591740$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/302320$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ochs, Stuart S.</creatorcontrib><creatorcontrib>Ganesh Rajagopalan, R.</creatorcontrib><title>AN ADAPTIVELY REFINED QUADTREE GRID METHOD FOR INCOMPRESSIBLE FLOWS</title><title>Numerical Heat Transfer. Part B, Fundamentals</title><description>An adoptively refined quadtree grid method for the numerical solution of the incompressible Navier-Stokes equations is presented. A pressure-based scheme with allocated primitive variables is used as the solution algorithm. A process of grid refinement and flow solution is repeated until a sufficiently resolved solution is obtained. The present method has been applied to a variety of test cases. The results show that an adoptively refined quadtree grid can yield a better grid distribution over the flow, therefore yielding a more accurate solution as well as an improved convergence rate than a structured grid with a similar number of grid points.</description><subject>Computational methods in fluid dynamics</subject><subject>ENGINEERING NOT INCLUDED IN OTHER CATEGORIES</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>INCOMPRESSIBLE FLOW</subject><subject>MESH GENERATION</subject><subject>NAVIER-STOKES EQUATIONS</subject><subject>NUMERICAL SOLUTION</subject><subject>Physics</subject><issn>1040-7790</issn><issn>1521-0626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkFFLhEAQxyUKuq4-QG8GvVqzru4q9GK63gneeXle0ZNsq5JheuwKdd8-D4seDmpeZmB-vxn4a9olghsEDtwisIBS13XAcZENxDrSJsg2kQHEJMfDPOyNAYBT7UypNxjKwtZE872l7gXeKoseWfyspyyMlizQHzZekKWM6bM0CvQFy-ZJoIdJqkdLP1msUrZeR_cx08M4eVqfaycVb1R58d2n2iZkmT834mQW-V5sCOxavYFNl3BKqqISFiUvGCrq2EB5AZggV3BOnUJQVHBkWjZxwIaqpAQwxsQcKBdPtavxbqf6Olei7kvxKrq2LUWfYzCxCQODRkbITilZVvlW1u9c7nIE-T6p_CCpwbkenS1XgjeV5K2o1a9ou4ha-9N3I1a3VSff-UcnmyLv-a7p5I-D__pC_9UPrLz_7PEXDNWFLw</recordid><startdate>19981201</startdate><enddate>19981201</enddate><creator>Ochs, Stuart S.</creator><creator>Ganesh Rajagopalan, R.</creator><general>Taylor & Francis Group</general><general>Taylor & Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19981201</creationdate><title>AN ADAPTIVELY REFINED QUADTREE GRID METHOD FOR INCOMPRESSIBLE FLOWS</title><author>Ochs, Stuart S. ; Ganesh Rajagopalan, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-3296a76fdfc476b30f78507ad03619caa78dc71da124568050fe760333627ad93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Computational methods in fluid dynamics</topic><topic>ENGINEERING NOT INCLUDED IN OTHER CATEGORIES</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>INCOMPRESSIBLE FLOW</topic><topic>MESH GENERATION</topic><topic>NAVIER-STOKES EQUATIONS</topic><topic>NUMERICAL SOLUTION</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ochs, Stuart S.</creatorcontrib><creatorcontrib>Ganesh Rajagopalan, R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Numerical Heat Transfer. Part B, Fundamentals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ochs, Stuart S.</au><au>Ganesh Rajagopalan, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AN ADAPTIVELY REFINED QUADTREE GRID METHOD FOR INCOMPRESSIBLE FLOWS</atitle><jtitle>Numerical Heat Transfer. Part B, Fundamentals</jtitle><date>1998-12-01</date><risdate>1998</risdate><volume>34</volume><issue>4</issue><spage>379</spage><epage>400</epage><pages>379-400</pages><issn>1040-7790</issn><eissn>1521-0626</eissn><coden>NHBFEE</coden><abstract>An adoptively refined quadtree grid method for the numerical solution of the incompressible Navier-Stokes equations is presented. A pressure-based scheme with allocated primitive variables is used as the solution algorithm. A process of grid refinement and flow solution is repeated until a sufficiently resolved solution is obtained. The present method has been applied to a variety of test cases. The results show that an adoptively refined quadtree grid can yield a better grid distribution over the flow, therefore yielding a more accurate solution as well as an improved convergence rate than a structured grid with a similar number of grid points.</abstract><cop>Philadelphia, PA</cop><pub>Taylor & Francis Group</pub><doi>10.1080/10407799808915064</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1040-7790 |
ispartof | Numerical Heat Transfer. Part B, Fundamentals, 1998-12, Vol.34 (4), p.379-400 |
issn | 1040-7790 1521-0626 |
language | eng |
recordid | cdi_crossref_primary_10_1080_10407799808915064 |
source | Taylor & Francis Journals Complete |
subjects | Computational methods in fluid dynamics ENGINEERING NOT INCLUDED IN OTHER CATEGORIES Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) INCOMPRESSIBLE FLOW MESH GENERATION NAVIER-STOKES EQUATIONS NUMERICAL SOLUTION Physics |
title | AN ADAPTIVELY REFINED QUADTREE GRID METHOD FOR INCOMPRESSIBLE FLOWS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A28%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AN%20ADAPTIVELY%20REFINED%20QUADTREE%20GRID%20METHOD%20FOR%20INCOMPRESSIBLE%20FLOWS&rft.jtitle=Numerical%20Heat%20Transfer.%20Part%20B,%20Fundamentals&rft.au=Ochs,%20Stuart%20S.&rft.date=1998-12-01&rft.volume=34&rft.issue=4&rft.spage=379&rft.epage=400&rft.pages=379-400&rft.issn=1040-7790&rft.eissn=1521-0626&rft.coden=NHBFEE&rft_id=info:doi/10.1080/10407799808915064&rft_dat=%3Cpascalfrancis_osti_%3E1591740%3C/pascalfrancis_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |