AN ADAPTIVELY REFINED QUADTREE GRID METHOD FOR INCOMPRESSIBLE FLOWS

An adoptively refined quadtree grid method for the numerical solution of the incompressible Navier-Stokes equations is presented. A pressure-based scheme with allocated primitive variables is used as the solution algorithm. A process of grid refinement and flow solution is repeated until a sufficien...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical Heat Transfer. Part B, Fundamentals Fundamentals, 1998-12, Vol.34 (4), p.379-400
Hauptverfasser: Ochs, Stuart S., Ganesh Rajagopalan, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 400
container_issue 4
container_start_page 379
container_title Numerical Heat Transfer. Part B, Fundamentals
container_volume 34
creator Ochs, Stuart S.
Ganesh Rajagopalan, R.
description An adoptively refined quadtree grid method for the numerical solution of the incompressible Navier-Stokes equations is presented. A pressure-based scheme with allocated primitive variables is used as the solution algorithm. A process of grid refinement and flow solution is repeated until a sufficiently resolved solution is obtained. The present method has been applied to a variety of test cases. The results show that an adoptively refined quadtree grid can yield a better grid distribution over the flow, therefore yielding a more accurate solution as well as an improved convergence rate than a structured grid with a similar number of grid points.
doi_str_mv 10.1080/10407799808915064
format Article
fullrecord <record><control><sourceid>pascalfrancis_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10407799808915064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1591740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-3296a76fdfc476b30f78507ad03619caa78dc71da124568050fe760333627ad93</originalsourceid><addsrcrecordid>eNqFkFFLhEAQxyUKuq4-QG8GvVqzru4q9GK63gneeXle0ZNsq5JheuwKdd8-D4seDmpeZmB-vxn4a9olghsEDtwisIBS13XAcZENxDrSJsg2kQHEJMfDPOyNAYBT7UypNxjKwtZE872l7gXeKoseWfyspyyMlizQHzZekKWM6bM0CvQFy-ZJoIdJqkdLP1msUrZeR_cx08M4eVqfaycVb1R58d2n2iZkmT834mQW-V5sCOxavYFNl3BKqqISFiUvGCrq2EB5AZggV3BOnUJQVHBkWjZxwIaqpAQwxsQcKBdPtavxbqf6Olei7kvxKrq2LUWfYzCxCQODRkbITilZVvlW1u9c7nIE-T6p_CCpwbkenS1XgjeV5K2o1a9ou4ha-9N3I1a3VSff-UcnmyLv-a7p5I-D__pC_9UPrLz_7PEXDNWFLw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>AN ADAPTIVELY REFINED QUADTREE GRID METHOD FOR INCOMPRESSIBLE FLOWS</title><source>Taylor &amp; Francis Journals Complete</source><creator>Ochs, Stuart S. ; Ganesh Rajagopalan, R.</creator><creatorcontrib>Ochs, Stuart S. ; Ganesh Rajagopalan, R.</creatorcontrib><description>An adoptively refined quadtree grid method for the numerical solution of the incompressible Navier-Stokes equations is presented. A pressure-based scheme with allocated primitive variables is used as the solution algorithm. A process of grid refinement and flow solution is repeated until a sufficiently resolved solution is obtained. The present method has been applied to a variety of test cases. The results show that an adoptively refined quadtree grid can yield a better grid distribution over the flow, therefore yielding a more accurate solution as well as an improved convergence rate than a structured grid with a similar number of grid points.</description><identifier>ISSN: 1040-7790</identifier><identifier>EISSN: 1521-0626</identifier><identifier>DOI: 10.1080/10407799808915064</identifier><identifier>CODEN: NHBFEE</identifier><language>eng</language><publisher>Philadelphia, PA: Taylor &amp; Francis Group</publisher><subject>Computational methods in fluid dynamics ; ENGINEERING NOT INCLUDED IN OTHER CATEGORIES ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; INCOMPRESSIBLE FLOW ; MESH GENERATION ; NAVIER-STOKES EQUATIONS ; NUMERICAL SOLUTION ; Physics</subject><ispartof>Numerical Heat Transfer. Part B, Fundamentals, 1998-12, Vol.34 (4), p.379-400</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1998</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c394t-3296a76fdfc476b30f78507ad03619caa78dc71da124568050fe760333627ad93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/10407799808915064$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/10407799808915064$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,881,27903,27904,59623,60412</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1591740$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/302320$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ochs, Stuart S.</creatorcontrib><creatorcontrib>Ganesh Rajagopalan, R.</creatorcontrib><title>AN ADAPTIVELY REFINED QUADTREE GRID METHOD FOR INCOMPRESSIBLE FLOWS</title><title>Numerical Heat Transfer. Part B, Fundamentals</title><description>An adoptively refined quadtree grid method for the numerical solution of the incompressible Navier-Stokes equations is presented. A pressure-based scheme with allocated primitive variables is used as the solution algorithm. A process of grid refinement and flow solution is repeated until a sufficiently resolved solution is obtained. The present method has been applied to a variety of test cases. The results show that an adoptively refined quadtree grid can yield a better grid distribution over the flow, therefore yielding a more accurate solution as well as an improved convergence rate than a structured grid with a similar number of grid points.</description><subject>Computational methods in fluid dynamics</subject><subject>ENGINEERING NOT INCLUDED IN OTHER CATEGORIES</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>INCOMPRESSIBLE FLOW</subject><subject>MESH GENERATION</subject><subject>NAVIER-STOKES EQUATIONS</subject><subject>NUMERICAL SOLUTION</subject><subject>Physics</subject><issn>1040-7790</issn><issn>1521-0626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkFFLhEAQxyUKuq4-QG8GvVqzru4q9GK63gneeXle0ZNsq5JheuwKdd8-D4seDmpeZmB-vxn4a9olghsEDtwisIBS13XAcZENxDrSJsg2kQHEJMfDPOyNAYBT7UypNxjKwtZE872l7gXeKoseWfyspyyMlizQHzZekKWM6bM0CvQFy-ZJoIdJqkdLP1msUrZeR_cx08M4eVqfaycVb1R58d2n2iZkmT834mQW-V5sCOxavYFNl3BKqqISFiUvGCrq2EB5AZggV3BOnUJQVHBkWjZxwIaqpAQwxsQcKBdPtavxbqf6Olei7kvxKrq2LUWfYzCxCQODRkbITilZVvlW1u9c7nIE-T6p_CCpwbkenS1XgjeV5K2o1a9ou4ha-9N3I1a3VSff-UcnmyLv-a7p5I-D__pC_9UPrLz_7PEXDNWFLw</recordid><startdate>19981201</startdate><enddate>19981201</enddate><creator>Ochs, Stuart S.</creator><creator>Ganesh Rajagopalan, R.</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19981201</creationdate><title>AN ADAPTIVELY REFINED QUADTREE GRID METHOD FOR INCOMPRESSIBLE FLOWS</title><author>Ochs, Stuart S. ; Ganesh Rajagopalan, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-3296a76fdfc476b30f78507ad03619caa78dc71da124568050fe760333627ad93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Computational methods in fluid dynamics</topic><topic>ENGINEERING NOT INCLUDED IN OTHER CATEGORIES</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>INCOMPRESSIBLE FLOW</topic><topic>MESH GENERATION</topic><topic>NAVIER-STOKES EQUATIONS</topic><topic>NUMERICAL SOLUTION</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ochs, Stuart S.</creatorcontrib><creatorcontrib>Ganesh Rajagopalan, R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Numerical Heat Transfer. Part B, Fundamentals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ochs, Stuart S.</au><au>Ganesh Rajagopalan, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AN ADAPTIVELY REFINED QUADTREE GRID METHOD FOR INCOMPRESSIBLE FLOWS</atitle><jtitle>Numerical Heat Transfer. Part B, Fundamentals</jtitle><date>1998-12-01</date><risdate>1998</risdate><volume>34</volume><issue>4</issue><spage>379</spage><epage>400</epage><pages>379-400</pages><issn>1040-7790</issn><eissn>1521-0626</eissn><coden>NHBFEE</coden><abstract>An adoptively refined quadtree grid method for the numerical solution of the incompressible Navier-Stokes equations is presented. A pressure-based scheme with allocated primitive variables is used as the solution algorithm. A process of grid refinement and flow solution is repeated until a sufficiently resolved solution is obtained. The present method has been applied to a variety of test cases. The results show that an adoptively refined quadtree grid can yield a better grid distribution over the flow, therefore yielding a more accurate solution as well as an improved convergence rate than a structured grid with a similar number of grid points.</abstract><cop>Philadelphia, PA</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/10407799808915064</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1040-7790
ispartof Numerical Heat Transfer. Part B, Fundamentals, 1998-12, Vol.34 (4), p.379-400
issn 1040-7790
1521-0626
language eng
recordid cdi_crossref_primary_10_1080_10407799808915064
source Taylor & Francis Journals Complete
subjects Computational methods in fluid dynamics
ENGINEERING NOT INCLUDED IN OTHER CATEGORIES
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
INCOMPRESSIBLE FLOW
MESH GENERATION
NAVIER-STOKES EQUATIONS
NUMERICAL SOLUTION
Physics
title AN ADAPTIVELY REFINED QUADTREE GRID METHOD FOR INCOMPRESSIBLE FLOWS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A28%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AN%20ADAPTIVELY%20REFINED%20QUADTREE%20GRID%20METHOD%20FOR%20INCOMPRESSIBLE%20FLOWS&rft.jtitle=Numerical%20Heat%20Transfer.%20Part%20B,%20Fundamentals&rft.au=Ochs,%20Stuart%20S.&rft.date=1998-12-01&rft.volume=34&rft.issue=4&rft.spage=379&rft.epage=400&rft.pages=379-400&rft.issn=1040-7790&rft.eissn=1521-0626&rft.coden=NHBFEE&rft_id=info:doi/10.1080/10407799808915064&rft_dat=%3Cpascalfrancis_osti_%3E1591740%3C/pascalfrancis_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true