Using Event Location in Finite-Difference Methods for Phase-Change Problems
Event location has been used in the implementation of an existing finite-difference method for phase-change problems. The finite-difference method results in a model that changes structure every time the interface crosses a spatial grid line. In the traditional methods, either a fixed time step has...
Gespeichert in:
Veröffentlicht in: | Numerical heat transfer. Part B, Fundamentals Fundamentals, 2006-05, Vol.50 (2), p.143-155 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 155 |
---|---|
container_issue | 2 |
container_start_page | 143 |
container_title | Numerical heat transfer. Part B, Fundamentals |
container_volume | 50 |
creator | Furenes, Beathe Lie, Bernt |
description | Event location has been used in the implementation of an existing finite-difference method for phase-change problems. The finite-difference method results in a model that changes structure every time the interface crosses a spatial grid line. In the traditional methods, either a fixed time step has been used, or the time step has been calculated by an iterative procedure as the time for the interface to move a single space increment. By using event location, the implementation stage is simplified, and the size of the time steps is automatically adapted to the interface dynamics. |
doi_str_mv | 10.1080/10407790500459338 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10407790500459338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29638038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-1edd76d23ae1aad6c801ee5820f81518d08caab5df38a060d7619016df44668d3</originalsourceid><addsrcrecordid>eNqFkMtKxTAQhosoeH0Ad93orjpp2jQFN3K84hFd6LqMycQT6Uk0ibe3N3IUFyLOJgP5vp_hL4ptBnsMJOwzaKDremgBmrbnXC4Va6ytWQWiFst5z__VJ7BarMf4AHka3qwVF7fRuvvy-IVcKqdeYbLeldaVJ9bZRNWRNYYCOUXlJaWZ17E0PpTXM4xUTWbo7qm8Dv5upHncLFYMjpG2vt6N4vbk-GZyVk2vTs8nh9NK5RtTxUjrTuiaIzFELZQERtTKGoxkLZMapEK8a7XhEkFAhlkPTGjTNEJIzTeK3UXuY_BPzxTTMLdR0TiiI_8ch7oXXAKXGWQLUAUfYyAzPAY7x_A-MBg-axt-1Zadna9wjApHE9ApG3_ETnaM933mugVnXS5kjq8-jHpI-D768C39Sh_SW8rmwb8m__vAD0_ZkQ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29638038</pqid></control><display><type>article</type><title>Using Event Location in Finite-Difference Methods for Phase-Change Problems</title><source>Taylor & Francis Online</source><creator>Furenes, Beathe ; Lie, Bernt</creator><creatorcontrib>Furenes, Beathe ; Lie, Bernt</creatorcontrib><description>Event location has been used in the implementation of an existing finite-difference method for phase-change problems. The finite-difference method results in a model that changes structure every time the interface crosses a spatial grid line. In the traditional methods, either a fixed time step has been used, or the time step has been calculated by an iterative procedure as the time for the interface to move a single space increment. By using event location, the implementation stage is simplified, and the size of the time steps is automatically adapted to the interface dynamics.</description><identifier>ISSN: 1040-7790</identifier><identifier>EISSN: 1521-0626</identifier><identifier>DOI: 10.1080/10407790500459338</identifier><identifier>CODEN: NHBFEE</identifier><language>eng</language><publisher>Philadelphia, PA: Taylor & Francis Group</publisher><subject>Analytical and numerical techniques ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Heat flow in multiphase systems ; Heat transfer ; Heat transfer in inhomogeneous media, in porous media, and through interfaces ; Physics</subject><ispartof>Numerical heat transfer. Part B, Fundamentals, 2006-05, Vol.50 (2), p.143-155</ispartof><rights>Copyright Taylor & Francis Group, LLC 2006</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-1edd76d23ae1aad6c801ee5820f81518d08caab5df38a060d7619016df44668d3</citedby><cites>FETCH-LOGICAL-c407t-1edd76d23ae1aad6c801ee5820f81518d08caab5df38a060d7619016df44668d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/10407790500459338$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/10407790500459338$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17871399$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Furenes, Beathe</creatorcontrib><creatorcontrib>Lie, Bernt</creatorcontrib><title>Using Event Location in Finite-Difference Methods for Phase-Change Problems</title><title>Numerical heat transfer. Part B, Fundamentals</title><description>Event location has been used in the implementation of an existing finite-difference method for phase-change problems. The finite-difference method results in a model that changes structure every time the interface crosses a spatial grid line. In the traditional methods, either a fixed time step has been used, or the time step has been calculated by an iterative procedure as the time for the interface to move a single space increment. By using event location, the implementation stage is simplified, and the size of the time steps is automatically adapted to the interface dynamics.</description><subject>Analytical and numerical techniques</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat flow in multiphase systems</subject><subject>Heat transfer</subject><subject>Heat transfer in inhomogeneous media, in porous media, and through interfaces</subject><subject>Physics</subject><issn>1040-7790</issn><issn>1521-0626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxTAQhosoeH0Ad93orjpp2jQFN3K84hFd6LqMycQT6Uk0ibe3N3IUFyLOJgP5vp_hL4ptBnsMJOwzaKDremgBmrbnXC4Va6ytWQWiFst5z__VJ7BarMf4AHka3qwVF7fRuvvy-IVcKqdeYbLeldaVJ9bZRNWRNYYCOUXlJaWZ17E0PpTXM4xUTWbo7qm8Dv5upHncLFYMjpG2vt6N4vbk-GZyVk2vTs8nh9NK5RtTxUjrTuiaIzFELZQERtTKGoxkLZMapEK8a7XhEkFAhlkPTGjTNEJIzTeK3UXuY_BPzxTTMLdR0TiiI_8ch7oXXAKXGWQLUAUfYyAzPAY7x_A-MBg-axt-1Zadna9wjApHE9ApG3_ETnaM933mugVnXS5kjq8-jHpI-D768C39Sh_SW8rmwb8m__vAD0_ZkQ4</recordid><startdate>20060501</startdate><enddate>20060501</enddate><creator>Furenes, Beathe</creator><creator>Lie, Bernt</creator><general>Taylor & Francis Group</general><general>Taylor & Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060501</creationdate><title>Using Event Location in Finite-Difference Methods for Phase-Change Problems</title><author>Furenes, Beathe ; Lie, Bernt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-1edd76d23ae1aad6c801ee5820f81518d08caab5df38a060d7619016df44668d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Analytical and numerical techniques</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat flow in multiphase systems</topic><topic>Heat transfer</topic><topic>Heat transfer in inhomogeneous media, in porous media, and through interfaces</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Furenes, Beathe</creatorcontrib><creatorcontrib>Lie, Bernt</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical heat transfer. Part B, Fundamentals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Furenes, Beathe</au><au>Lie, Bernt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Event Location in Finite-Difference Methods for Phase-Change Problems</atitle><jtitle>Numerical heat transfer. Part B, Fundamentals</jtitle><date>2006-05-01</date><risdate>2006</risdate><volume>50</volume><issue>2</issue><spage>143</spage><epage>155</epage><pages>143-155</pages><issn>1040-7790</issn><eissn>1521-0626</eissn><coden>NHBFEE</coden><abstract>Event location has been used in the implementation of an existing finite-difference method for phase-change problems. The finite-difference method results in a model that changes structure every time the interface crosses a spatial grid line. In the traditional methods, either a fixed time step has been used, or the time step has been calculated by an iterative procedure as the time for the interface to move a single space increment. By using event location, the implementation stage is simplified, and the size of the time steps is automatically adapted to the interface dynamics.</abstract><cop>Philadelphia, PA</cop><pub>Taylor & Francis Group</pub><doi>10.1080/10407790500459338</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1040-7790 |
ispartof | Numerical heat transfer. Part B, Fundamentals, 2006-05, Vol.50 (2), p.143-155 |
issn | 1040-7790 1521-0626 |
language | eng |
recordid | cdi_crossref_primary_10_1080_10407790500459338 |
source | Taylor & Francis Online |
subjects | Analytical and numerical techniques Exact sciences and technology Fundamental areas of phenomenology (including applications) Heat flow in multiphase systems Heat transfer Heat transfer in inhomogeneous media, in porous media, and through interfaces Physics |
title | Using Event Location in Finite-Difference Methods for Phase-Change Problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T20%3A40%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Event%20Location%20in%20Finite-Difference%20Methods%20for%20Phase-Change%20Problems&rft.jtitle=Numerical%20heat%20transfer.%20Part%20B,%20Fundamentals&rft.au=Furenes,%20Beathe&rft.date=2006-05-01&rft.volume=50&rft.issue=2&rft.spage=143&rft.epage=155&rft.pages=143-155&rft.issn=1040-7790&rft.eissn=1521-0626&rft.coden=NHBFEE&rft_id=info:doi/10.1080/10407790500459338&rft_dat=%3Cproquest_cross%3E29638038%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29638038&rft_id=info:pmid/&rfr_iscdi=true |