Using Event Location in Finite-Difference Methods for Phase-Change Problems

Event location has been used in the implementation of an existing finite-difference method for phase-change problems. The finite-difference method results in a model that changes structure every time the interface crosses a spatial grid line. In the traditional methods, either a fixed time step has...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical heat transfer. Part B, Fundamentals Fundamentals, 2006-05, Vol.50 (2), p.143-155
Hauptverfasser: Furenes, Beathe, Lie, Bernt
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 155
container_issue 2
container_start_page 143
container_title Numerical heat transfer. Part B, Fundamentals
container_volume 50
creator Furenes, Beathe
Lie, Bernt
description Event location has been used in the implementation of an existing finite-difference method for phase-change problems. The finite-difference method results in a model that changes structure every time the interface crosses a spatial grid line. In the traditional methods, either a fixed time step has been used, or the time step has been calculated by an iterative procedure as the time for the interface to move a single space increment. By using event location, the implementation stage is simplified, and the size of the time steps is automatically adapted to the interface dynamics.
doi_str_mv 10.1080/10407790500459338
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10407790500459338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29638038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-1edd76d23ae1aad6c801ee5820f81518d08caab5df38a060d7619016df44668d3</originalsourceid><addsrcrecordid>eNqFkMtKxTAQhosoeH0Ad93orjpp2jQFN3K84hFd6LqMycQT6Uk0ibe3N3IUFyLOJgP5vp_hL4ptBnsMJOwzaKDremgBmrbnXC4Va6ytWQWiFst5z__VJ7BarMf4AHka3qwVF7fRuvvy-IVcKqdeYbLeldaVJ9bZRNWRNYYCOUXlJaWZ17E0PpTXM4xUTWbo7qm8Dv5upHncLFYMjpG2vt6N4vbk-GZyVk2vTs8nh9NK5RtTxUjrTuiaIzFELZQERtTKGoxkLZMapEK8a7XhEkFAhlkPTGjTNEJIzTeK3UXuY_BPzxTTMLdR0TiiI_8ch7oXXAKXGWQLUAUfYyAzPAY7x_A-MBg-axt-1Zadna9wjApHE9ApG3_ETnaM933mugVnXS5kjq8-jHpI-D768C39Sh_SW8rmwb8m__vAD0_ZkQ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29638038</pqid></control><display><type>article</type><title>Using Event Location in Finite-Difference Methods for Phase-Change Problems</title><source>Taylor &amp; Francis Online</source><creator>Furenes, Beathe ; Lie, Bernt</creator><creatorcontrib>Furenes, Beathe ; Lie, Bernt</creatorcontrib><description>Event location has been used in the implementation of an existing finite-difference method for phase-change problems. The finite-difference method results in a model that changes structure every time the interface crosses a spatial grid line. In the traditional methods, either a fixed time step has been used, or the time step has been calculated by an iterative procedure as the time for the interface to move a single space increment. By using event location, the implementation stage is simplified, and the size of the time steps is automatically adapted to the interface dynamics.</description><identifier>ISSN: 1040-7790</identifier><identifier>EISSN: 1521-0626</identifier><identifier>DOI: 10.1080/10407790500459338</identifier><identifier>CODEN: NHBFEE</identifier><language>eng</language><publisher>Philadelphia, PA: Taylor &amp; Francis Group</publisher><subject>Analytical and numerical techniques ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Heat flow in multiphase systems ; Heat transfer ; Heat transfer in inhomogeneous media, in porous media, and through interfaces ; Physics</subject><ispartof>Numerical heat transfer. Part B, Fundamentals, 2006-05, Vol.50 (2), p.143-155</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2006</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-1edd76d23ae1aad6c801ee5820f81518d08caab5df38a060d7619016df44668d3</citedby><cites>FETCH-LOGICAL-c407t-1edd76d23ae1aad6c801ee5820f81518d08caab5df38a060d7619016df44668d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/10407790500459338$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/10407790500459338$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17871399$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Furenes, Beathe</creatorcontrib><creatorcontrib>Lie, Bernt</creatorcontrib><title>Using Event Location in Finite-Difference Methods for Phase-Change Problems</title><title>Numerical heat transfer. Part B, Fundamentals</title><description>Event location has been used in the implementation of an existing finite-difference method for phase-change problems. The finite-difference method results in a model that changes structure every time the interface crosses a spatial grid line. In the traditional methods, either a fixed time step has been used, or the time step has been calculated by an iterative procedure as the time for the interface to move a single space increment. By using event location, the implementation stage is simplified, and the size of the time steps is automatically adapted to the interface dynamics.</description><subject>Analytical and numerical techniques</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat flow in multiphase systems</subject><subject>Heat transfer</subject><subject>Heat transfer in inhomogeneous media, in porous media, and through interfaces</subject><subject>Physics</subject><issn>1040-7790</issn><issn>1521-0626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxTAQhosoeH0Ad93orjpp2jQFN3K84hFd6LqMycQT6Uk0ibe3N3IUFyLOJgP5vp_hL4ptBnsMJOwzaKDremgBmrbnXC4Va6ytWQWiFst5z__VJ7BarMf4AHka3qwVF7fRuvvy-IVcKqdeYbLeldaVJ9bZRNWRNYYCOUXlJaWZ17E0PpTXM4xUTWbo7qm8Dv5upHncLFYMjpG2vt6N4vbk-GZyVk2vTs8nh9NK5RtTxUjrTuiaIzFELZQERtTKGoxkLZMapEK8a7XhEkFAhlkPTGjTNEJIzTeK3UXuY_BPzxTTMLdR0TiiI_8ch7oXXAKXGWQLUAUfYyAzPAY7x_A-MBg-axt-1Zadna9wjApHE9ApG3_ETnaM933mugVnXS5kjq8-jHpI-D768C39Sh_SW8rmwb8m__vAD0_ZkQ4</recordid><startdate>20060501</startdate><enddate>20060501</enddate><creator>Furenes, Beathe</creator><creator>Lie, Bernt</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060501</creationdate><title>Using Event Location in Finite-Difference Methods for Phase-Change Problems</title><author>Furenes, Beathe ; Lie, Bernt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-1edd76d23ae1aad6c801ee5820f81518d08caab5df38a060d7619016df44668d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Analytical and numerical techniques</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat flow in multiphase systems</topic><topic>Heat transfer</topic><topic>Heat transfer in inhomogeneous media, in porous media, and through interfaces</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Furenes, Beathe</creatorcontrib><creatorcontrib>Lie, Bernt</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical heat transfer. Part B, Fundamentals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Furenes, Beathe</au><au>Lie, Bernt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Event Location in Finite-Difference Methods for Phase-Change Problems</atitle><jtitle>Numerical heat transfer. Part B, Fundamentals</jtitle><date>2006-05-01</date><risdate>2006</risdate><volume>50</volume><issue>2</issue><spage>143</spage><epage>155</epage><pages>143-155</pages><issn>1040-7790</issn><eissn>1521-0626</eissn><coden>NHBFEE</coden><abstract>Event location has been used in the implementation of an existing finite-difference method for phase-change problems. The finite-difference method results in a model that changes structure every time the interface crosses a spatial grid line. In the traditional methods, either a fixed time step has been used, or the time step has been calculated by an iterative procedure as the time for the interface to move a single space increment. By using event location, the implementation stage is simplified, and the size of the time steps is automatically adapted to the interface dynamics.</abstract><cop>Philadelphia, PA</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/10407790500459338</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1040-7790
ispartof Numerical heat transfer. Part B, Fundamentals, 2006-05, Vol.50 (2), p.143-155
issn 1040-7790
1521-0626
language eng
recordid cdi_crossref_primary_10_1080_10407790500459338
source Taylor & Francis Online
subjects Analytical and numerical techniques
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Heat flow in multiphase systems
Heat transfer
Heat transfer in inhomogeneous media, in porous media, and through interfaces
Physics
title Using Event Location in Finite-Difference Methods for Phase-Change Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T20%3A40%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Event%20Location%20in%20Finite-Difference%20Methods%20for%20Phase-Change%20Problems&rft.jtitle=Numerical%20heat%20transfer.%20Part%20B,%20Fundamentals&rft.au=Furenes,%20Beathe&rft.date=2006-05-01&rft.volume=50&rft.issue=2&rft.spage=143&rft.epage=155&rft.pages=143-155&rft.issn=1040-7790&rft.eissn=1521-0626&rft.coden=NHBFEE&rft_id=info:doi/10.1080/10407790500459338&rft_dat=%3Cproquest_cross%3E29638038%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29638038&rft_id=info:pmid/&rfr_iscdi=true