NUMERICAL INVESTIGATION OF TURBULENT FORCED CONVECTION IN DUCTS WITH RECTANGULAR AND TRAPEZOIDAL CROSS-SECTION AREA BY USING DIFFERENT TURBULENCE MODELS

The present work concerns development and application of turbulence models for forced convective heat transfer in ducts. Fully developed flow and temperature fields in straight ducts are considered. The numerical approach is based on the finite volume technique, and a nonstaggered arrangement is emp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical Heat Transfer. Part A, Applications Applications, 1996-09, Vol.30 (4), p.321-346
Hauptverfasser: Rokni, Masoud, Sundén, Bengt
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 346
container_issue 4
container_start_page 321
container_title Numerical Heat Transfer. Part A, Applications
container_volume 30
creator Rokni, Masoud
Sundén, Bengt
description The present work concerns development and application of turbulence models for forced convective heat transfer in ducts. Fully developed flow and temperature fields in straight ducts are considered. The numerical approach is based on the finite volume technique, and a nonstaggered arrangement is employed. The SIMPLEC algorithm is used for handling the pressure-velocity coupling. To achieve fully developed conditions, cyclic boundary conditions are imposed in the main flow direction. The standard k-ϵ model with wall function is used as a reference. The nonlinear k-ϵ model of Speziale is applied to calculate the turbulent shear stresses. The turbulent heat fluxes are calculated by three different methods, namely, the simple eddy diffusivity concept, the generalized gradient diffusion hypothesis method and the wealth = earnings × time method. The overall comparison between the methods is presented in terms of the friction factor and average Nusselt number. In particular, the secondary flow field is investigated. The more advanced models show improvement in most cases.
doi_str_mv 10.1080/10407789608913843
format Article
fullrecord <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10407789608913843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2484701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-f4232e7acea3d6ca24fa3d93fd8c173433e3c3984d1205ab22f5285025a216d63</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhosoOF4ewF0Et9XcegM3nTYdA7WVtFV0U2LaYmVmKk1BfBMf14zjuBGzySHn-84fjmWdIXiJoA-vEKTQ8_zAhX6AiE_JnjVDDkY2dAndN7Xp2wbAh9aR1q_QHIyDmfWZVbdM8ChMAc_uWVHyRVjyPAN5AspKzKuUZSVIchGxGES5QaLvNs9AXEVlAR54eQOEeQ2zRZWGAoRZDEoR3rGnnMdmbCTyorCLHy8ULATzR1AVPFuAmCcJE5uEXVbEwG0es7Q4sQ46udTt6c99bFUJK6MbO80Xm-_aijhosjuKCW49qVpJGldJTDtTBKRrfIU8QglpiSKBTxuEoSOfMe4c7DsQOxIjt3HJsXW-nTvoqa-16qdWvahhvW7VVFPkBcQxDNoyahy0Htuufhv7lRw_agTrzfrrP-s3zsXWeZNayWU3yrXq9a-IqU89iAx2vcX6dTeMK_k-jMumnuTHchh3Dvk_5QvwPIra</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>NUMERICAL INVESTIGATION OF TURBULENT FORCED CONVECTION IN DUCTS WITH RECTANGULAR AND TRAPEZOIDAL CROSS-SECTION AREA BY USING DIFFERENT TURBULENCE MODELS</title><source>Taylor &amp; Francis Journals Complete</source><creator>Rokni, Masoud ; Sundén, Bengt</creator><creatorcontrib>Rokni, Masoud ; Sundén, Bengt</creatorcontrib><description>The present work concerns development and application of turbulence models for forced convective heat transfer in ducts. Fully developed flow and temperature fields in straight ducts are considered. The numerical approach is based on the finite volume technique, and a nonstaggered arrangement is employed. The SIMPLEC algorithm is used for handling the pressure-velocity coupling. To achieve fully developed conditions, cyclic boundary conditions are imposed in the main flow direction. The standard k-ϵ model with wall function is used as a reference. The nonlinear k-ϵ model of Speziale is applied to calculate the turbulent shear stresses. The turbulent heat fluxes are calculated by three different methods, namely, the simple eddy diffusivity concept, the generalized gradient diffusion hypothesis method and the wealth = earnings × time method. The overall comparison between the methods is presented in terms of the friction factor and average Nusselt number. In particular, the secondary flow field is investigated. The more advanced models show improvement in most cases.</description><identifier>ISSN: 1040-7782</identifier><identifier>EISSN: 1521-0634</identifier><identifier>DOI: 10.1080/10407789608913843</identifier><identifier>CODEN: NHAAES</identifier><language>eng</language><publisher>London: Taylor &amp; Francis Group</publisher><subject>Convection and heat transfer ; DUCTS ; ENGINEERING NOT INCLUDED IN OTHER CATEGORIES ; Exact sciences and technology ; Flows in ducts, channels, nozzles, and conduits ; Fluid dynamics ; FORCED CONVECTION ; Fundamental areas of phenomenology (including applications) ; MATHEMATICAL MODELS ; NUMERICAL ANALYSIS ; Physics ; RECTANGULAR CONFIGURATION ; S CODES ; Turbulence simulation and modeling ; TURBULENT FLOW ; Turbulent flows, convection, and heat transfer</subject><ispartof>Numerical Heat Transfer. Part A, Applications, 1996-09, Vol.30 (4), p.321-346</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1996</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-f4232e7acea3d6ca24fa3d93fd8c173433e3c3984d1205ab22f5285025a216d63</citedby><cites>FETCH-LOGICAL-c351t-f4232e7acea3d6ca24fa3d93fd8c173433e3c3984d1205ab22f5285025a216d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/10407789608913843$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/10407789608913843$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,777,781,882,27905,27906,59626,60415</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2484701$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/417935$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rokni, Masoud</creatorcontrib><creatorcontrib>Sundén, Bengt</creatorcontrib><title>NUMERICAL INVESTIGATION OF TURBULENT FORCED CONVECTION IN DUCTS WITH RECTANGULAR AND TRAPEZOIDAL CROSS-SECTION AREA BY USING DIFFERENT TURBULENCE MODELS</title><title>Numerical Heat Transfer. Part A, Applications</title><description>The present work concerns development and application of turbulence models for forced convective heat transfer in ducts. Fully developed flow and temperature fields in straight ducts are considered. The numerical approach is based on the finite volume technique, and a nonstaggered arrangement is employed. The SIMPLEC algorithm is used for handling the pressure-velocity coupling. To achieve fully developed conditions, cyclic boundary conditions are imposed in the main flow direction. The standard k-ϵ model with wall function is used as a reference. The nonlinear k-ϵ model of Speziale is applied to calculate the turbulent shear stresses. The turbulent heat fluxes are calculated by three different methods, namely, the simple eddy diffusivity concept, the generalized gradient diffusion hypothesis method and the wealth = earnings × time method. The overall comparison between the methods is presented in terms of the friction factor and average Nusselt number. In particular, the secondary flow field is investigated. The more advanced models show improvement in most cases.</description><subject>Convection and heat transfer</subject><subject>DUCTS</subject><subject>ENGINEERING NOT INCLUDED IN OTHER CATEGORIES</subject><subject>Exact sciences and technology</subject><subject>Flows in ducts, channels, nozzles, and conduits</subject><subject>Fluid dynamics</subject><subject>FORCED CONVECTION</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>MATHEMATICAL MODELS</subject><subject>NUMERICAL ANALYSIS</subject><subject>Physics</subject><subject>RECTANGULAR CONFIGURATION</subject><subject>S CODES</subject><subject>Turbulence simulation and modeling</subject><subject>TURBULENT FLOW</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>1040-7782</issn><issn>1521-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKxDAUhosoOF4ewF0Et9XcegM3nTYdA7WVtFV0U2LaYmVmKk1BfBMf14zjuBGzySHn-84fjmWdIXiJoA-vEKTQ8_zAhX6AiE_JnjVDDkY2dAndN7Xp2wbAh9aR1q_QHIyDmfWZVbdM8ChMAc_uWVHyRVjyPAN5AspKzKuUZSVIchGxGES5QaLvNs9AXEVlAR54eQOEeQ2zRZWGAoRZDEoR3rGnnMdmbCTyorCLHy8ULATzR1AVPFuAmCcJE5uEXVbEwG0es7Q4sQ46udTt6c99bFUJK6MbO80Xm-_aijhosjuKCW49qVpJGldJTDtTBKRrfIU8QglpiSKBTxuEoSOfMe4c7DsQOxIjt3HJsXW-nTvoqa-16qdWvahhvW7VVFPkBcQxDNoyahy0Htuufhv7lRw_agTrzfrrP-s3zsXWeZNayWU3yrXq9a-IqU89iAx2vcX6dTeMK_k-jMumnuTHchh3Dvk_5QvwPIra</recordid><startdate>19960901</startdate><enddate>19960901</enddate><creator>Rokni, Masoud</creator><creator>Sundén, Bengt</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19960901</creationdate><title>NUMERICAL INVESTIGATION OF TURBULENT FORCED CONVECTION IN DUCTS WITH RECTANGULAR AND TRAPEZOIDAL CROSS-SECTION AREA BY USING DIFFERENT TURBULENCE MODELS</title><author>Rokni, Masoud ; Sundén, Bengt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-f4232e7acea3d6ca24fa3d93fd8c173433e3c3984d1205ab22f5285025a216d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Convection and heat transfer</topic><topic>DUCTS</topic><topic>ENGINEERING NOT INCLUDED IN OTHER CATEGORIES</topic><topic>Exact sciences and technology</topic><topic>Flows in ducts, channels, nozzles, and conduits</topic><topic>Fluid dynamics</topic><topic>FORCED CONVECTION</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>MATHEMATICAL MODELS</topic><topic>NUMERICAL ANALYSIS</topic><topic>Physics</topic><topic>RECTANGULAR CONFIGURATION</topic><topic>S CODES</topic><topic>Turbulence simulation and modeling</topic><topic>TURBULENT FLOW</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rokni, Masoud</creatorcontrib><creatorcontrib>Sundén, Bengt</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Numerical Heat Transfer. Part A, Applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rokni, Masoud</au><au>Sundén, Bengt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NUMERICAL INVESTIGATION OF TURBULENT FORCED CONVECTION IN DUCTS WITH RECTANGULAR AND TRAPEZOIDAL CROSS-SECTION AREA BY USING DIFFERENT TURBULENCE MODELS</atitle><jtitle>Numerical Heat Transfer. Part A, Applications</jtitle><date>1996-09-01</date><risdate>1996</risdate><volume>30</volume><issue>4</issue><spage>321</spage><epage>346</epage><pages>321-346</pages><issn>1040-7782</issn><eissn>1521-0634</eissn><coden>NHAAES</coden><abstract>The present work concerns development and application of turbulence models for forced convective heat transfer in ducts. Fully developed flow and temperature fields in straight ducts are considered. The numerical approach is based on the finite volume technique, and a nonstaggered arrangement is employed. The SIMPLEC algorithm is used for handling the pressure-velocity coupling. To achieve fully developed conditions, cyclic boundary conditions are imposed in the main flow direction. The standard k-ϵ model with wall function is used as a reference. The nonlinear k-ϵ model of Speziale is applied to calculate the turbulent shear stresses. The turbulent heat fluxes are calculated by three different methods, namely, the simple eddy diffusivity concept, the generalized gradient diffusion hypothesis method and the wealth = earnings × time method. The overall comparison between the methods is presented in terms of the friction factor and average Nusselt number. In particular, the secondary flow field is investigated. The more advanced models show improvement in most cases.</abstract><cop>London</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/10407789608913843</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1040-7782
ispartof Numerical Heat Transfer. Part A, Applications, 1996-09, Vol.30 (4), p.321-346
issn 1040-7782
1521-0634
language eng
recordid cdi_crossref_primary_10_1080_10407789608913843
source Taylor & Francis Journals Complete
subjects Convection and heat transfer
DUCTS
ENGINEERING NOT INCLUDED IN OTHER CATEGORIES
Exact sciences and technology
Flows in ducts, channels, nozzles, and conduits
Fluid dynamics
FORCED CONVECTION
Fundamental areas of phenomenology (including applications)
MATHEMATICAL MODELS
NUMERICAL ANALYSIS
Physics
RECTANGULAR CONFIGURATION
S CODES
Turbulence simulation and modeling
TURBULENT FLOW
Turbulent flows, convection, and heat transfer
title NUMERICAL INVESTIGATION OF TURBULENT FORCED CONVECTION IN DUCTS WITH RECTANGULAR AND TRAPEZOIDAL CROSS-SECTION AREA BY USING DIFFERENT TURBULENCE MODELS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A54%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NUMERICAL%20INVESTIGATION%20OF%20TURBULENT%20FORCED%20CONVECTION%20IN%20DUCTS%20WITH%20RECTANGULAR%20AND%20TRAPEZOIDAL%20CROSS-SECTION%20AREA%20BY%20USING%20DIFFERENT%20TURBULENCE%20MODELS&rft.jtitle=Numerical%20Heat%20Transfer.%20Part%20A,%20Applications&rft.au=Rokni,%20Masoud&rft.date=1996-09-01&rft.volume=30&rft.issue=4&rft.spage=321&rft.epage=346&rft.pages=321-346&rft.issn=1040-7782&rft.eissn=1521-0634&rft.coden=NHAAES&rft_id=info:doi/10.1080/10407789608913843&rft_dat=%3Cpascalfrancis_cross%3E2484701%3C/pascalfrancis_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true