NUMERICAL INVESTIGATION OF TURBULENT FORCED CONVECTION IN DUCTS WITH RECTANGULAR AND TRAPEZOIDAL CROSS-SECTION AREA BY USING DIFFERENT TURBULENCE MODELS
The present work concerns development and application of turbulence models for forced convective heat transfer in ducts. Fully developed flow and temperature fields in straight ducts are considered. The numerical approach is based on the finite volume technique, and a nonstaggered arrangement is emp...
Gespeichert in:
Veröffentlicht in: | Numerical Heat Transfer. Part A, Applications Applications, 1996-09, Vol.30 (4), p.321-346 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 346 |
---|---|
container_issue | 4 |
container_start_page | 321 |
container_title | Numerical Heat Transfer. Part A, Applications |
container_volume | 30 |
creator | Rokni, Masoud Sundén, Bengt |
description | The present work concerns development and application of turbulence models for forced convective heat transfer in ducts. Fully developed flow and temperature fields in straight ducts are considered. The numerical approach is based on the finite volume technique, and a nonstaggered arrangement is employed. The SIMPLEC algorithm is used for handling the pressure-velocity coupling. To achieve fully developed conditions, cyclic boundary conditions are imposed in the main flow direction. The standard k-ϵ model with wall function is used as a reference. The nonlinear k-ϵ model of Speziale is applied to calculate the turbulent shear stresses. The turbulent heat fluxes are calculated by three different methods, namely, the simple eddy diffusivity concept, the generalized gradient diffusion hypothesis method and the wealth = earnings × time method. The overall comparison between the methods is presented in terms of the friction factor and average Nusselt number. In particular, the secondary flow field is investigated. The more advanced models show improvement in most cases. |
doi_str_mv | 10.1080/10407789608913843 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_10407789608913843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2484701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-f4232e7acea3d6ca24fa3d93fd8c173433e3c3984d1205ab22f5285025a216d63</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhosoOF4ewF0Et9XcegM3nTYdA7WVtFV0U2LaYmVmKk1BfBMf14zjuBGzySHn-84fjmWdIXiJoA-vEKTQ8_zAhX6AiE_JnjVDDkY2dAndN7Xp2wbAh9aR1q_QHIyDmfWZVbdM8ChMAc_uWVHyRVjyPAN5AspKzKuUZSVIchGxGES5QaLvNs9AXEVlAR54eQOEeQ2zRZWGAoRZDEoR3rGnnMdmbCTyorCLHy8ULATzR1AVPFuAmCcJE5uEXVbEwG0es7Q4sQ46udTt6c99bFUJK6MbO80Xm-_aijhosjuKCW49qVpJGldJTDtTBKRrfIU8QglpiSKBTxuEoSOfMe4c7DsQOxIjt3HJsXW-nTvoqa-16qdWvahhvW7VVFPkBcQxDNoyahy0Htuufhv7lRw_agTrzfrrP-s3zsXWeZNayWU3yrXq9a-IqU89iAx2vcX6dTeMK_k-jMumnuTHchh3Dvk_5QvwPIra</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>NUMERICAL INVESTIGATION OF TURBULENT FORCED CONVECTION IN DUCTS WITH RECTANGULAR AND TRAPEZOIDAL CROSS-SECTION AREA BY USING DIFFERENT TURBULENCE MODELS</title><source>Taylor & Francis Journals Complete</source><creator>Rokni, Masoud ; Sundén, Bengt</creator><creatorcontrib>Rokni, Masoud ; Sundén, Bengt</creatorcontrib><description>The present work concerns development and application of turbulence models for forced convective heat transfer in ducts. Fully developed flow and temperature fields in straight ducts are considered. The numerical approach is based on the finite volume technique, and a nonstaggered arrangement is employed. The SIMPLEC algorithm is used for handling the pressure-velocity coupling. To achieve fully developed conditions, cyclic boundary conditions are imposed in the main flow direction. The standard k-ϵ model with wall function is used as a reference. The nonlinear k-ϵ model of Speziale is applied to calculate the turbulent shear stresses. The turbulent heat fluxes are calculated by three different methods, namely, the simple eddy diffusivity concept, the generalized gradient diffusion hypothesis method and the wealth = earnings × time method. The overall comparison between the methods is presented in terms of the friction factor and average Nusselt number. In particular, the secondary flow field is investigated. The more advanced models show improvement in most cases.</description><identifier>ISSN: 1040-7782</identifier><identifier>EISSN: 1521-0634</identifier><identifier>DOI: 10.1080/10407789608913843</identifier><identifier>CODEN: NHAAES</identifier><language>eng</language><publisher>London: Taylor & Francis Group</publisher><subject>Convection and heat transfer ; DUCTS ; ENGINEERING NOT INCLUDED IN OTHER CATEGORIES ; Exact sciences and technology ; Flows in ducts, channels, nozzles, and conduits ; Fluid dynamics ; FORCED CONVECTION ; Fundamental areas of phenomenology (including applications) ; MATHEMATICAL MODELS ; NUMERICAL ANALYSIS ; Physics ; RECTANGULAR CONFIGURATION ; S CODES ; Turbulence simulation and modeling ; TURBULENT FLOW ; Turbulent flows, convection, and heat transfer</subject><ispartof>Numerical Heat Transfer. Part A, Applications, 1996-09, Vol.30 (4), p.321-346</ispartof><rights>Copyright Taylor & Francis Group, LLC 1996</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-f4232e7acea3d6ca24fa3d93fd8c173433e3c3984d1205ab22f5285025a216d63</citedby><cites>FETCH-LOGICAL-c351t-f4232e7acea3d6ca24fa3d93fd8c173433e3c3984d1205ab22f5285025a216d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/10407789608913843$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/10407789608913843$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,777,781,882,27905,27906,59626,60415</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2484701$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/417935$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rokni, Masoud</creatorcontrib><creatorcontrib>Sundén, Bengt</creatorcontrib><title>NUMERICAL INVESTIGATION OF TURBULENT FORCED CONVECTION IN DUCTS WITH RECTANGULAR AND TRAPEZOIDAL CROSS-SECTION AREA BY USING DIFFERENT TURBULENCE MODELS</title><title>Numerical Heat Transfer. Part A, Applications</title><description>The present work concerns development and application of turbulence models for forced convective heat transfer in ducts. Fully developed flow and temperature fields in straight ducts are considered. The numerical approach is based on the finite volume technique, and a nonstaggered arrangement is employed. The SIMPLEC algorithm is used for handling the pressure-velocity coupling. To achieve fully developed conditions, cyclic boundary conditions are imposed in the main flow direction. The standard k-ϵ model with wall function is used as a reference. The nonlinear k-ϵ model of Speziale is applied to calculate the turbulent shear stresses. The turbulent heat fluxes are calculated by three different methods, namely, the simple eddy diffusivity concept, the generalized gradient diffusion hypothesis method and the wealth = earnings × time method. The overall comparison between the methods is presented in terms of the friction factor and average Nusselt number. In particular, the secondary flow field is investigated. The more advanced models show improvement in most cases.</description><subject>Convection and heat transfer</subject><subject>DUCTS</subject><subject>ENGINEERING NOT INCLUDED IN OTHER CATEGORIES</subject><subject>Exact sciences and technology</subject><subject>Flows in ducts, channels, nozzles, and conduits</subject><subject>Fluid dynamics</subject><subject>FORCED CONVECTION</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>MATHEMATICAL MODELS</subject><subject>NUMERICAL ANALYSIS</subject><subject>Physics</subject><subject>RECTANGULAR CONFIGURATION</subject><subject>S CODES</subject><subject>Turbulence simulation and modeling</subject><subject>TURBULENT FLOW</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>1040-7782</issn><issn>1521-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKxDAUhosoOF4ewF0Et9XcegM3nTYdA7WVtFV0U2LaYmVmKk1BfBMf14zjuBGzySHn-84fjmWdIXiJoA-vEKTQ8_zAhX6AiE_JnjVDDkY2dAndN7Xp2wbAh9aR1q_QHIyDmfWZVbdM8ChMAc_uWVHyRVjyPAN5AspKzKuUZSVIchGxGES5QaLvNs9AXEVlAR54eQOEeQ2zRZWGAoRZDEoR3rGnnMdmbCTyorCLHy8ULATzR1AVPFuAmCcJE5uEXVbEwG0es7Q4sQ46udTt6c99bFUJK6MbO80Xm-_aijhosjuKCW49qVpJGldJTDtTBKRrfIU8QglpiSKBTxuEoSOfMe4c7DsQOxIjt3HJsXW-nTvoqa-16qdWvahhvW7VVFPkBcQxDNoyahy0Htuufhv7lRw_agTrzfrrP-s3zsXWeZNayWU3yrXq9a-IqU89iAx2vcX6dTeMK_k-jMumnuTHchh3Dvk_5QvwPIra</recordid><startdate>19960901</startdate><enddate>19960901</enddate><creator>Rokni, Masoud</creator><creator>Sundén, Bengt</creator><general>Taylor & Francis Group</general><general>Taylor & Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19960901</creationdate><title>NUMERICAL INVESTIGATION OF TURBULENT FORCED CONVECTION IN DUCTS WITH RECTANGULAR AND TRAPEZOIDAL CROSS-SECTION AREA BY USING DIFFERENT TURBULENCE MODELS</title><author>Rokni, Masoud ; Sundén, Bengt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-f4232e7acea3d6ca24fa3d93fd8c173433e3c3984d1205ab22f5285025a216d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Convection and heat transfer</topic><topic>DUCTS</topic><topic>ENGINEERING NOT INCLUDED IN OTHER CATEGORIES</topic><topic>Exact sciences and technology</topic><topic>Flows in ducts, channels, nozzles, and conduits</topic><topic>Fluid dynamics</topic><topic>FORCED CONVECTION</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>MATHEMATICAL MODELS</topic><topic>NUMERICAL ANALYSIS</topic><topic>Physics</topic><topic>RECTANGULAR CONFIGURATION</topic><topic>S CODES</topic><topic>Turbulence simulation and modeling</topic><topic>TURBULENT FLOW</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rokni, Masoud</creatorcontrib><creatorcontrib>Sundén, Bengt</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Numerical Heat Transfer. Part A, Applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rokni, Masoud</au><au>Sundén, Bengt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NUMERICAL INVESTIGATION OF TURBULENT FORCED CONVECTION IN DUCTS WITH RECTANGULAR AND TRAPEZOIDAL CROSS-SECTION AREA BY USING DIFFERENT TURBULENCE MODELS</atitle><jtitle>Numerical Heat Transfer. Part A, Applications</jtitle><date>1996-09-01</date><risdate>1996</risdate><volume>30</volume><issue>4</issue><spage>321</spage><epage>346</epage><pages>321-346</pages><issn>1040-7782</issn><eissn>1521-0634</eissn><coden>NHAAES</coden><abstract>The present work concerns development and application of turbulence models for forced convective heat transfer in ducts. Fully developed flow and temperature fields in straight ducts are considered. The numerical approach is based on the finite volume technique, and a nonstaggered arrangement is employed. The SIMPLEC algorithm is used for handling the pressure-velocity coupling. To achieve fully developed conditions, cyclic boundary conditions are imposed in the main flow direction. The standard k-ϵ model with wall function is used as a reference. The nonlinear k-ϵ model of Speziale is applied to calculate the turbulent shear stresses. The turbulent heat fluxes are calculated by three different methods, namely, the simple eddy diffusivity concept, the generalized gradient diffusion hypothesis method and the wealth = earnings × time method. The overall comparison between the methods is presented in terms of the friction factor and average Nusselt number. In particular, the secondary flow field is investigated. The more advanced models show improvement in most cases.</abstract><cop>London</cop><pub>Taylor & Francis Group</pub><doi>10.1080/10407789608913843</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1040-7782 |
ispartof | Numerical Heat Transfer. Part A, Applications, 1996-09, Vol.30 (4), p.321-346 |
issn | 1040-7782 1521-0634 |
language | eng |
recordid | cdi_crossref_primary_10_1080_10407789608913843 |
source | Taylor & Francis Journals Complete |
subjects | Convection and heat transfer DUCTS ENGINEERING NOT INCLUDED IN OTHER CATEGORIES Exact sciences and technology Flows in ducts, channels, nozzles, and conduits Fluid dynamics FORCED CONVECTION Fundamental areas of phenomenology (including applications) MATHEMATICAL MODELS NUMERICAL ANALYSIS Physics RECTANGULAR CONFIGURATION S CODES Turbulence simulation and modeling TURBULENT FLOW Turbulent flows, convection, and heat transfer |
title | NUMERICAL INVESTIGATION OF TURBULENT FORCED CONVECTION IN DUCTS WITH RECTANGULAR AND TRAPEZOIDAL CROSS-SECTION AREA BY USING DIFFERENT TURBULENCE MODELS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A54%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NUMERICAL%20INVESTIGATION%20OF%20TURBULENT%20FORCED%20CONVECTION%20IN%20DUCTS%20WITH%20RECTANGULAR%20AND%20TRAPEZOIDAL%20CROSS-SECTION%20AREA%20BY%20USING%20DIFFERENT%20TURBULENCE%20MODELS&rft.jtitle=Numerical%20Heat%20Transfer.%20Part%20A,%20Applications&rft.au=Rokni,%20Masoud&rft.date=1996-09-01&rft.volume=30&rft.issue=4&rft.spage=321&rft.epage=346&rft.pages=321-346&rft.issn=1040-7782&rft.eissn=1521-0634&rft.coden=NHAAES&rft_id=info:doi/10.1080/10407789608913843&rft_dat=%3Cpascalfrancis_cross%3E2484701%3C/pascalfrancis_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |