A novel model for estimating the body weight of Pelibuey sheep through Gray Wolf Optimizer algorithm
Weight prediction in live animals remains challenging. Several studies have been carried out trying to predict the body weight in livestock through morphometric measurements, the Schaeffer's model is one of them. However, the fit of those studies in small ruminants is not well covered. Therefor...
Gespeichert in:
Veröffentlicht in: | Journal of Applied Animal Research 2022-12, Vol.50 (1), p.635-642 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 642 |
---|---|
container_issue | 1 |
container_start_page | 635 |
container_title | Journal of Applied Animal Research |
container_volume | 50 |
creator | Montoya-Santiyanes, Luis Alvaro Chay-Canul, Alfonso Juventino Camacho-Pérez, Enrique Rodríguez-Abreo, Omar |
description | Weight prediction in live animals remains challenging. Several studies have been carried out trying to predict the body weight in livestock through morphometric measurements, the Schaeffer's model is one of them. However, the fit of those studies in small ruminants is not well covered. Therefore, a novel model to predict the weight of Pelibuey sheep through morphometric measurements and the Gray Wolf Optimizer algorithm is presented. The model involves calculating the volume of the specimen through a truncated cone and leaving density as an estimation parameter of the algorithm. Also, two alternative models were made where the original Schaeffer's model was optimized. The modified models from the original Schaeffer's formula showed improvements up to 22.61% in R-squared and decreases up to 33.48% in RMSE. However, the truncated cone model had the best estimates, with an RMSE of 2.57, R-squared of 89.02%, and the lowest AIC. This represented a 25.13% improvement in R-squared and a 38.31% reduction in the RMSE. The model is expected to improve its efficiency if the cattle sample is larger, and it is also intended to be implemented in animals of other proportions. |
doi_str_mv | 10.1080/09712119.2022.2123812 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_09712119_2022_2123812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c8a8f0c0498e443eb0913e5a376a0359</doaj_id><sourcerecordid>2758460099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-4e42775c9be8d748abaaecd8c6e4c2e2b2fed9ad2d30ddeb5149d73c2cd8c5343</originalsourceid><addsrcrecordid>eNp9UU1L7DAULaKgqD9BCLjuvHx1muwU8emAoAvFZbhNbtsMnWZMO0_qrzd19C3N4iZczjk395wsu2B0waiif6guGWdMLzjlfMEZF4rxg-wk9WXOlJSHX2-Wz6Dj7HwY1jQdqQVfspPMXZM-_MOObIJLtQ6R4DD6DYy-b8jYIqmCm8g7-qYdSajJE3a-2uFEhhZxmxAx7JqW3EWYyGvoavK4TXT_gZFA14Tox3Zzlh3V0A14_n2fZi9_b59v7vOHx7vVzfVDbmXBxlyi5GVZWF2hcqVUUAGgdcouUVqOvOI1Og2OO0Gdw6pgUrtSWD5jCiHFabba67oAa7ONaY04mQDefDVCbAzE0dsOjVWgamqTDwqlFFhRzQQWIMolUFHopHW519rG8LZLnph12MU-fd_wslBySameUcUeZWMYhoj1_6mMmjkf85OPmfMx3_kk3tWe5_tk-QbeQ-ycGWHqQqwj9NYPRvwu8Qno3Jdi</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758460099</pqid></control><display><type>article</type><title>A novel model for estimating the body weight of Pelibuey sheep through Gray Wolf Optimizer algorithm</title><source>Taylor & Francis Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Montoya-Santiyanes, Luis Alvaro ; Chay-Canul, Alfonso Juventino ; Camacho-Pérez, Enrique ; Rodríguez-Abreo, Omar</creator><creatorcontrib>Montoya-Santiyanes, Luis Alvaro ; Chay-Canul, Alfonso Juventino ; Camacho-Pérez, Enrique ; Rodríguez-Abreo, Omar</creatorcontrib><description>Weight prediction in live animals remains challenging. Several studies have been carried out trying to predict the body weight in livestock through morphometric measurements, the Schaeffer's model is one of them. However, the fit of those studies in small ruminants is not well covered. Therefore, a novel model to predict the weight of Pelibuey sheep through morphometric measurements and the Gray Wolf Optimizer algorithm is presented. The model involves calculating the volume of the specimen through a truncated cone and leaving density as an estimation parameter of the algorithm. Also, two alternative models were made where the original Schaeffer's model was optimized. The modified models from the original Schaeffer's formula showed improvements up to 22.61% in R-squared and decreases up to 33.48% in RMSE. However, the truncated cone model had the best estimates, with an RMSE of 2.57, R-squared of 89.02%, and the lowest AIC. This represented a 25.13% improvement in R-squared and a 38.31% reduction in the RMSE. The model is expected to improve its efficiency if the cattle sample is larger, and it is also intended to be implemented in animals of other proportions.</description><identifier>ISSN: 0971-2119</identifier><identifier>EISSN: 0974-1844</identifier><identifier>DOI: 10.1080/09712119.2022.2123812</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Algorithms ; Body weight ; GWO ; Livestock ; Metaheuristic ; Morphometric ; Schaeffer's formula ; Small ruminants ; Wolves</subject><ispartof>Journal of Applied Animal Research, 2022-12, Vol.50 (1), p.635-642</ispartof><rights>2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2022</rights><rights>2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-4e42775c9be8d748abaaecd8c6e4c2e2b2fed9ad2d30ddeb5149d73c2cd8c5343</citedby><cites>FETCH-LOGICAL-c451t-4e42775c9be8d748abaaecd8c6e4c2e2b2fed9ad2d30ddeb5149d73c2cd8c5343</cites><orcidid>0000-0002-2581-1921 ; 0000-0002-8650-1185 ; 0000-0003-3380-1544 ; 0000-0003-4412-4972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/09712119.2022.2123812$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/09712119.2022.2123812$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27502,27924,27925,59143,59144</link.rule.ids></links><search><creatorcontrib>Montoya-Santiyanes, Luis Alvaro</creatorcontrib><creatorcontrib>Chay-Canul, Alfonso Juventino</creatorcontrib><creatorcontrib>Camacho-Pérez, Enrique</creatorcontrib><creatorcontrib>Rodríguez-Abreo, Omar</creatorcontrib><title>A novel model for estimating the body weight of Pelibuey sheep through Gray Wolf Optimizer algorithm</title><title>Journal of Applied Animal Research</title><description>Weight prediction in live animals remains challenging. Several studies have been carried out trying to predict the body weight in livestock through morphometric measurements, the Schaeffer's model is one of them. However, the fit of those studies in small ruminants is not well covered. Therefore, a novel model to predict the weight of Pelibuey sheep through morphometric measurements and the Gray Wolf Optimizer algorithm is presented. The model involves calculating the volume of the specimen through a truncated cone and leaving density as an estimation parameter of the algorithm. Also, two alternative models were made where the original Schaeffer's model was optimized. The modified models from the original Schaeffer's formula showed improvements up to 22.61% in R-squared and decreases up to 33.48% in RMSE. However, the truncated cone model had the best estimates, with an RMSE of 2.57, R-squared of 89.02%, and the lowest AIC. This represented a 25.13% improvement in R-squared and a 38.31% reduction in the RMSE. The model is expected to improve its efficiency if the cattle sample is larger, and it is also intended to be implemented in animals of other proportions.</description><subject>Algorithms</subject><subject>Body weight</subject><subject>GWO</subject><subject>Livestock</subject><subject>Metaheuristic</subject><subject>Morphometric</subject><subject>Schaeffer's formula</subject><subject>Small ruminants</subject><subject>Wolves</subject><issn>0971-2119</issn><issn>0974-1844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNp9UU1L7DAULaKgqD9BCLjuvHx1muwU8emAoAvFZbhNbtsMnWZMO0_qrzd19C3N4iZczjk395wsu2B0waiif6guGWdMLzjlfMEZF4rxg-wk9WXOlJSHX2-Wz6Dj7HwY1jQdqQVfspPMXZM-_MOObIJLtQ6R4DD6DYy-b8jYIqmCm8g7-qYdSajJE3a-2uFEhhZxmxAx7JqW3EWYyGvoavK4TXT_gZFA14Tox3Zzlh3V0A14_n2fZi9_b59v7vOHx7vVzfVDbmXBxlyi5GVZWF2hcqVUUAGgdcouUVqOvOI1Og2OO0Gdw6pgUrtSWD5jCiHFabba67oAa7ONaY04mQDefDVCbAzE0dsOjVWgamqTDwqlFFhRzQQWIMolUFHopHW519rG8LZLnph12MU-fd_wslBySameUcUeZWMYhoj1_6mMmjkf85OPmfMx3_kk3tWe5_tk-QbeQ-ycGWHqQqwj9NYPRvwu8Qno3Jdi</recordid><startdate>20221231</startdate><enddate>20221231</enddate><creator>Montoya-Santiyanes, Luis Alvaro</creator><creator>Chay-Canul, Alfonso Juventino</creator><creator>Camacho-Pérez, Enrique</creator><creator>Rodríguez-Abreo, Omar</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><general>Taylor & Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2581-1921</orcidid><orcidid>https://orcid.org/0000-0002-8650-1185</orcidid><orcidid>https://orcid.org/0000-0003-3380-1544</orcidid><orcidid>https://orcid.org/0000-0003-4412-4972</orcidid></search><sort><creationdate>20221231</creationdate><title>A novel model for estimating the body weight of Pelibuey sheep through Gray Wolf Optimizer algorithm</title><author>Montoya-Santiyanes, Luis Alvaro ; Chay-Canul, Alfonso Juventino ; Camacho-Pérez, Enrique ; Rodríguez-Abreo, Omar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-4e42775c9be8d748abaaecd8c6e4c2e2b2fed9ad2d30ddeb5149d73c2cd8c5343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Body weight</topic><topic>GWO</topic><topic>Livestock</topic><topic>Metaheuristic</topic><topic>Morphometric</topic><topic>Schaeffer's formula</topic><topic>Small ruminants</topic><topic>Wolves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Montoya-Santiyanes, Luis Alvaro</creatorcontrib><creatorcontrib>Chay-Canul, Alfonso Juventino</creatorcontrib><creatorcontrib>Camacho-Pérez, Enrique</creatorcontrib><creatorcontrib>Rodríguez-Abreo, Omar</creatorcontrib><collection>Taylor & Francis Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of Applied Animal Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Montoya-Santiyanes, Luis Alvaro</au><au>Chay-Canul, Alfonso Juventino</au><au>Camacho-Pérez, Enrique</au><au>Rodríguez-Abreo, Omar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel model for estimating the body weight of Pelibuey sheep through Gray Wolf Optimizer algorithm</atitle><jtitle>Journal of Applied Animal Research</jtitle><date>2022-12-31</date><risdate>2022</risdate><volume>50</volume><issue>1</issue><spage>635</spage><epage>642</epage><pages>635-642</pages><issn>0971-2119</issn><eissn>0974-1844</eissn><abstract>Weight prediction in live animals remains challenging. Several studies have been carried out trying to predict the body weight in livestock through morphometric measurements, the Schaeffer's model is one of them. However, the fit of those studies in small ruminants is not well covered. Therefore, a novel model to predict the weight of Pelibuey sheep through morphometric measurements and the Gray Wolf Optimizer algorithm is presented. The model involves calculating the volume of the specimen through a truncated cone and leaving density as an estimation parameter of the algorithm. Also, two alternative models were made where the original Schaeffer's model was optimized. The modified models from the original Schaeffer's formula showed improvements up to 22.61% in R-squared and decreases up to 33.48% in RMSE. However, the truncated cone model had the best estimates, with an RMSE of 2.57, R-squared of 89.02%, and the lowest AIC. This represented a 25.13% improvement in R-squared and a 38.31% reduction in the RMSE. The model is expected to improve its efficiency if the cattle sample is larger, and it is also intended to be implemented in animals of other proportions.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/09712119.2022.2123812</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2581-1921</orcidid><orcidid>https://orcid.org/0000-0002-8650-1185</orcidid><orcidid>https://orcid.org/0000-0003-3380-1544</orcidid><orcidid>https://orcid.org/0000-0003-4412-4972</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0971-2119 |
ispartof | Journal of Applied Animal Research, 2022-12, Vol.50 (1), p.635-642 |
issn | 0971-2119 0974-1844 |
language | eng |
recordid | cdi_crossref_primary_10_1080_09712119_2022_2123812 |
source | Taylor & Francis Open Access; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Body weight GWO Livestock Metaheuristic Morphometric Schaeffer's formula Small ruminants Wolves |
title | A novel model for estimating the body weight of Pelibuey sheep through Gray Wolf Optimizer algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A44%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20model%20for%20estimating%20the%20body%20weight%20of%20Pelibuey%20sheep%20through%20Gray%20Wolf%20Optimizer%20algorithm&rft.jtitle=Journal%20of%20Applied%20Animal%20Research&rft.au=Montoya-Santiyanes,%20Luis%20Alvaro&rft.date=2022-12-31&rft.volume=50&rft.issue=1&rft.spage=635&rft.epage=642&rft.pages=635-642&rft.issn=0971-2119&rft.eissn=0974-1844&rft_id=info:doi/10.1080/09712119.2022.2123812&rft_dat=%3Cproquest_cross%3E2758460099%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2758460099&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_c8a8f0c0498e443eb0913e5a376a0359&rfr_iscdi=true |