A novel model for estimating the body weight of Pelibuey sheep through Gray Wolf Optimizer algorithm

Weight prediction in live animals remains challenging. Several studies have been carried out trying to predict the body weight in livestock through morphometric measurements, the Schaeffer's model is one of them. However, the fit of those studies in small ruminants is not well covered. Therefor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Applied Animal Research 2022-12, Vol.50 (1), p.635-642
Hauptverfasser: Montoya-Santiyanes, Luis Alvaro, Chay-Canul, Alfonso Juventino, Camacho-Pérez, Enrique, Rodríguez-Abreo, Omar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 642
container_issue 1
container_start_page 635
container_title Journal of Applied Animal Research
container_volume 50
creator Montoya-Santiyanes, Luis Alvaro
Chay-Canul, Alfonso Juventino
Camacho-Pérez, Enrique
Rodríguez-Abreo, Omar
description Weight prediction in live animals remains challenging. Several studies have been carried out trying to predict the body weight in livestock through morphometric measurements, the Schaeffer's model is one of them. However, the fit of those studies in small ruminants is not well covered. Therefore, a novel model to predict the weight of Pelibuey sheep through morphometric measurements and the Gray Wolf Optimizer algorithm is presented. The model involves calculating the volume of the specimen through a truncated cone and leaving density as an estimation parameter of the algorithm. Also, two alternative models were made where the original Schaeffer's model was optimized. The modified models from the original Schaeffer's formula showed improvements up to 22.61% in R-squared and decreases up to 33.48% in RMSE. However, the truncated cone model had the best estimates, with an RMSE of 2.57, R-squared of 89.02%, and the lowest AIC. This represented a 25.13% improvement in R-squared and a 38.31% reduction in the RMSE. The model is expected to improve its efficiency if the cattle sample is larger, and it is also intended to be implemented in animals of other proportions.
doi_str_mv 10.1080/09712119.2022.2123812
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_09712119_2022_2123812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c8a8f0c0498e443eb0913e5a376a0359</doaj_id><sourcerecordid>2758460099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-4e42775c9be8d748abaaecd8c6e4c2e2b2fed9ad2d30ddeb5149d73c2cd8c5343</originalsourceid><addsrcrecordid>eNp9UU1L7DAULaKgqD9BCLjuvHx1muwU8emAoAvFZbhNbtsMnWZMO0_qrzd19C3N4iZczjk395wsu2B0waiif6guGWdMLzjlfMEZF4rxg-wk9WXOlJSHX2-Wz6Dj7HwY1jQdqQVfspPMXZM-_MOObIJLtQ6R4DD6DYy-b8jYIqmCm8g7-qYdSajJE3a-2uFEhhZxmxAx7JqW3EWYyGvoavK4TXT_gZFA14Tox3Zzlh3V0A14_n2fZi9_b59v7vOHx7vVzfVDbmXBxlyi5GVZWF2hcqVUUAGgdcouUVqOvOI1Og2OO0Gdw6pgUrtSWD5jCiHFabba67oAa7ONaY04mQDefDVCbAzE0dsOjVWgamqTDwqlFFhRzQQWIMolUFHopHW519rG8LZLnph12MU-fd_wslBySameUcUeZWMYhoj1_6mMmjkf85OPmfMx3_kk3tWe5_tk-QbeQ-ycGWHqQqwj9NYPRvwu8Qno3Jdi</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758460099</pqid></control><display><type>article</type><title>A novel model for estimating the body weight of Pelibuey sheep through Gray Wolf Optimizer algorithm</title><source>Taylor &amp; Francis Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Montoya-Santiyanes, Luis Alvaro ; Chay-Canul, Alfonso Juventino ; Camacho-Pérez, Enrique ; Rodríguez-Abreo, Omar</creator><creatorcontrib>Montoya-Santiyanes, Luis Alvaro ; Chay-Canul, Alfonso Juventino ; Camacho-Pérez, Enrique ; Rodríguez-Abreo, Omar</creatorcontrib><description>Weight prediction in live animals remains challenging. Several studies have been carried out trying to predict the body weight in livestock through morphometric measurements, the Schaeffer's model is one of them. However, the fit of those studies in small ruminants is not well covered. Therefore, a novel model to predict the weight of Pelibuey sheep through morphometric measurements and the Gray Wolf Optimizer algorithm is presented. The model involves calculating the volume of the specimen through a truncated cone and leaving density as an estimation parameter of the algorithm. Also, two alternative models were made where the original Schaeffer's model was optimized. The modified models from the original Schaeffer's formula showed improvements up to 22.61% in R-squared and decreases up to 33.48% in RMSE. However, the truncated cone model had the best estimates, with an RMSE of 2.57, R-squared of 89.02%, and the lowest AIC. This represented a 25.13% improvement in R-squared and a 38.31% reduction in the RMSE. The model is expected to improve its efficiency if the cattle sample is larger, and it is also intended to be implemented in animals of other proportions.</description><identifier>ISSN: 0971-2119</identifier><identifier>EISSN: 0974-1844</identifier><identifier>DOI: 10.1080/09712119.2022.2123812</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Algorithms ; Body weight ; GWO ; Livestock ; Metaheuristic ; Morphometric ; Schaeffer's formula ; Small ruminants ; Wolves</subject><ispartof>Journal of Applied Animal Research, 2022-12, Vol.50 (1), p.635-642</ispartof><rights>2022 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group 2022</rights><rights>2022 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-4e42775c9be8d748abaaecd8c6e4c2e2b2fed9ad2d30ddeb5149d73c2cd8c5343</citedby><cites>FETCH-LOGICAL-c451t-4e42775c9be8d748abaaecd8c6e4c2e2b2fed9ad2d30ddeb5149d73c2cd8c5343</cites><orcidid>0000-0002-2581-1921 ; 0000-0002-8650-1185 ; 0000-0003-3380-1544 ; 0000-0003-4412-4972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/09712119.2022.2123812$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/09712119.2022.2123812$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27502,27924,27925,59143,59144</link.rule.ids></links><search><creatorcontrib>Montoya-Santiyanes, Luis Alvaro</creatorcontrib><creatorcontrib>Chay-Canul, Alfonso Juventino</creatorcontrib><creatorcontrib>Camacho-Pérez, Enrique</creatorcontrib><creatorcontrib>Rodríguez-Abreo, Omar</creatorcontrib><title>A novel model for estimating the body weight of Pelibuey sheep through Gray Wolf Optimizer algorithm</title><title>Journal of Applied Animal Research</title><description>Weight prediction in live animals remains challenging. Several studies have been carried out trying to predict the body weight in livestock through morphometric measurements, the Schaeffer's model is one of them. However, the fit of those studies in small ruminants is not well covered. Therefore, a novel model to predict the weight of Pelibuey sheep through morphometric measurements and the Gray Wolf Optimizer algorithm is presented. The model involves calculating the volume of the specimen through a truncated cone and leaving density as an estimation parameter of the algorithm. Also, two alternative models were made where the original Schaeffer's model was optimized. The modified models from the original Schaeffer's formula showed improvements up to 22.61% in R-squared and decreases up to 33.48% in RMSE. However, the truncated cone model had the best estimates, with an RMSE of 2.57, R-squared of 89.02%, and the lowest AIC. This represented a 25.13% improvement in R-squared and a 38.31% reduction in the RMSE. The model is expected to improve its efficiency if the cattle sample is larger, and it is also intended to be implemented in animals of other proportions.</description><subject>Algorithms</subject><subject>Body weight</subject><subject>GWO</subject><subject>Livestock</subject><subject>Metaheuristic</subject><subject>Morphometric</subject><subject>Schaeffer's formula</subject><subject>Small ruminants</subject><subject>Wolves</subject><issn>0971-2119</issn><issn>0974-1844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNp9UU1L7DAULaKgqD9BCLjuvHx1muwU8emAoAvFZbhNbtsMnWZMO0_qrzd19C3N4iZczjk395wsu2B0waiif6guGWdMLzjlfMEZF4rxg-wk9WXOlJSHX2-Wz6Dj7HwY1jQdqQVfspPMXZM-_MOObIJLtQ6R4DD6DYy-b8jYIqmCm8g7-qYdSajJE3a-2uFEhhZxmxAx7JqW3EWYyGvoavK4TXT_gZFA14Tox3Zzlh3V0A14_n2fZi9_b59v7vOHx7vVzfVDbmXBxlyi5GVZWF2hcqVUUAGgdcouUVqOvOI1Og2OO0Gdw6pgUrtSWD5jCiHFabba67oAa7ONaY04mQDefDVCbAzE0dsOjVWgamqTDwqlFFhRzQQWIMolUFHopHW519rG8LZLnph12MU-fd_wslBySameUcUeZWMYhoj1_6mMmjkf85OPmfMx3_kk3tWe5_tk-QbeQ-ycGWHqQqwj9NYPRvwu8Qno3Jdi</recordid><startdate>20221231</startdate><enddate>20221231</enddate><creator>Montoya-Santiyanes, Luis Alvaro</creator><creator>Chay-Canul, Alfonso Juventino</creator><creator>Camacho-Pérez, Enrique</creator><creator>Rodríguez-Abreo, Omar</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><general>Taylor &amp; Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2581-1921</orcidid><orcidid>https://orcid.org/0000-0002-8650-1185</orcidid><orcidid>https://orcid.org/0000-0003-3380-1544</orcidid><orcidid>https://orcid.org/0000-0003-4412-4972</orcidid></search><sort><creationdate>20221231</creationdate><title>A novel model for estimating the body weight of Pelibuey sheep through Gray Wolf Optimizer algorithm</title><author>Montoya-Santiyanes, Luis Alvaro ; Chay-Canul, Alfonso Juventino ; Camacho-Pérez, Enrique ; Rodríguez-Abreo, Omar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-4e42775c9be8d748abaaecd8c6e4c2e2b2fed9ad2d30ddeb5149d73c2cd8c5343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Body weight</topic><topic>GWO</topic><topic>Livestock</topic><topic>Metaheuristic</topic><topic>Morphometric</topic><topic>Schaeffer's formula</topic><topic>Small ruminants</topic><topic>Wolves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Montoya-Santiyanes, Luis Alvaro</creatorcontrib><creatorcontrib>Chay-Canul, Alfonso Juventino</creatorcontrib><creatorcontrib>Camacho-Pérez, Enrique</creatorcontrib><creatorcontrib>Rodríguez-Abreo, Omar</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of Applied Animal Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Montoya-Santiyanes, Luis Alvaro</au><au>Chay-Canul, Alfonso Juventino</au><au>Camacho-Pérez, Enrique</au><au>Rodríguez-Abreo, Omar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel model for estimating the body weight of Pelibuey sheep through Gray Wolf Optimizer algorithm</atitle><jtitle>Journal of Applied Animal Research</jtitle><date>2022-12-31</date><risdate>2022</risdate><volume>50</volume><issue>1</issue><spage>635</spage><epage>642</epage><pages>635-642</pages><issn>0971-2119</issn><eissn>0974-1844</eissn><abstract>Weight prediction in live animals remains challenging. Several studies have been carried out trying to predict the body weight in livestock through morphometric measurements, the Schaeffer's model is one of them. However, the fit of those studies in small ruminants is not well covered. Therefore, a novel model to predict the weight of Pelibuey sheep through morphometric measurements and the Gray Wolf Optimizer algorithm is presented. The model involves calculating the volume of the specimen through a truncated cone and leaving density as an estimation parameter of the algorithm. Also, two alternative models were made where the original Schaeffer's model was optimized. The modified models from the original Schaeffer's formula showed improvements up to 22.61% in R-squared and decreases up to 33.48% in RMSE. However, the truncated cone model had the best estimates, with an RMSE of 2.57, R-squared of 89.02%, and the lowest AIC. This represented a 25.13% improvement in R-squared and a 38.31% reduction in the RMSE. The model is expected to improve its efficiency if the cattle sample is larger, and it is also intended to be implemented in animals of other proportions.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/09712119.2022.2123812</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2581-1921</orcidid><orcidid>https://orcid.org/0000-0002-8650-1185</orcidid><orcidid>https://orcid.org/0000-0003-3380-1544</orcidid><orcidid>https://orcid.org/0000-0003-4412-4972</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0971-2119
ispartof Journal of Applied Animal Research, 2022-12, Vol.50 (1), p.635-642
issn 0971-2119
0974-1844
language eng
recordid cdi_crossref_primary_10_1080_09712119_2022_2123812
source Taylor & Francis Open Access; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Body weight
GWO
Livestock
Metaheuristic
Morphometric
Schaeffer's formula
Small ruminants
Wolves
title A novel model for estimating the body weight of Pelibuey sheep through Gray Wolf Optimizer algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A44%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20model%20for%20estimating%20the%20body%20weight%20of%20Pelibuey%20sheep%20through%20Gray%20Wolf%20Optimizer%20algorithm&rft.jtitle=Journal%20of%20Applied%20Animal%20Research&rft.au=Montoya-Santiyanes,%20Luis%20Alvaro&rft.date=2022-12-31&rft.volume=50&rft.issue=1&rft.spage=635&rft.epage=642&rft.pages=635-642&rft.issn=0971-2119&rft.eissn=0974-1844&rft_id=info:doi/10.1080/09712119.2022.2123812&rft_dat=%3Cproquest_cross%3E2758460099%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2758460099&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_c8a8f0c0498e443eb0913e5a376a0359&rfr_iscdi=true