Transport of antiviral 3'-deoxy-nucleoside drugs by recombinant human and rat equilibrative, nitrobenzylthioinosine (NBMPR)-insensitive (ENT2) nucleoside transporter proteins produced in Xenopus oocytes
In the present study, one has determined the relative role of plasma membrane equilibrative (Na+-independent) ENT nucleoside transport proteins (particularly ENT2) in the uptake of antiviral nucleoside analogues for comparison with the previously reported drug transport properties of concentrative (...
Gespeichert in:
Veröffentlicht in: | Molecular membrane biology 2001, Vol.18 (2), p.161-167 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present study, one has determined the relative role of plasma membrane equilibrative (Na+-independent) ENT nucleoside transport proteins (particularly ENT2) in the uptake of antiviral nucleoside analogues for comparison with the previously reported drug transport properties of concentrative (Na+-dependent) CNT nucleoside transport proteins. The human and rat nucleoside transport proteins hENT1, rENT1, hENT2 and rENT2 were produced in Xenopus oocytes and investigated for their ability to transport three 3'-deoxy-nucleoside analogues, ddC (2' 3'-dideoxycytidine), AZT (3'-azido-3'-deoxythymidine)and ddI (2' 3'-dideoxyinosine), used in human immunodeficiency virus (HIV) therapy. The results show, for the first time, that the ENT2 transporter isoform represents a mechanism for cellular uptake of these clinically important nucleoside drugs. Recombinant h/rENT2 transported ddC, ddI and AZT, whilst h/rENT1 transported only ddC and ddI. Relative to uridine, h/rENT2 mediated substantially larger fluxes of ddC and ddI than h/rENT1. Transplanting the amino-terminal half of rENT2 into rENT1 rendered rENT1 transport-positive for AZT and enhanced the uptake of both ddC and ddI, identifying this region as a major site of 3'-deoxy-nucleoside drug interaction. |
---|---|
ISSN: | 0968-7688 1464-5203 |
DOI: | 10.1080/09687680118681 |