Flexible brain: a domain-model based bayesian network for classification
Currently, deep learning methods have been widely applied to many fields like classification. Generally, these methods use the technology like transferring to make a model work well on different domains like building a strong brain. Existing transferring methods include complex model reconstruction...
Gespeichert in:
Veröffentlicht in: | Journal of experimental & theoretical artificial intelligence 2022-11, Vol.34 (6), p.1011-1028 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1028 |
---|---|
container_issue | 6 |
container_start_page | 1011 |
container_title | Journal of experimental & theoretical artificial intelligence |
container_volume | 34 |
creator | Jin, Guanghao Song, Qingzeng |
description | Currently, deep learning methods have been widely applied to many fields like classification. Generally, these methods use the technology like transferring to make a model work well on different domains like building a strong brain. Existing transferring methods include complex model reconstruction or high-quality retraining on the new domains that makes it hard to implement or ensure high accuracy. This paper introduces a domain-model-based Bayesian network and related solutions to solve this problem. Our solutions make it easier to add new domains while ensure high accuracy like a flexible brain. The experimental results show that our solutions can ensure higher accuracy than the single model one. Furthermore, we also evaluated the network in transferring case and the result shows that the accuracy of our solutions is higher than the single transferred model. |
doi_str_mv | 10.1080/0952813X.2021.1949753 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_0952813X_2021_1949753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2735686253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c216t-5d2c3851a750b7ee010463930de7aef157dff294cab93a499a61a6327e81e35f3</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-BKHguWsmaZrGkyKuKyx4UfAWpm0CWdtkTbro_ntbdr16mZnDe294HyHXQBdAK3pLlWAV8I8FowwWoAolBT8hM-AlyzmV6pTMJk0-ic7JRUobSikIgBlZLTvz4-rOZHVE5-8yzNrQj1feh9Z0WY3JtOPcm-TQZ94M3yF-ZjbErOkwJWddg4ML_pKcWeySuTruOXlfPr09rvL16_PL48M6bxiUQy5a1vBKAEpBa2kMBVqUXHHaGonGgpCttUwVDdaKY6EUloAlZ9JUYLiwfE5uDrnbGL52Jg16E3bRjy81k1yUVckEH1XioGpiSCkaq7fR9Rj3GqieoOk_aHqCpo_QRt_9wef8WLHHsWzX6gH3XYg2om9c0vz_iF-pjHMc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2735686253</pqid></control><display><type>article</type><title>Flexible brain: a domain-model based bayesian network for classification</title><source>Business Source Complete</source><creator>Jin, Guanghao ; Song, Qingzeng</creator><creatorcontrib>Jin, Guanghao ; Song, Qingzeng</creatorcontrib><description>Currently, deep learning methods have been widely applied to many fields like classification. Generally, these methods use the technology like transferring to make a model work well on different domains like building a strong brain. Existing transferring methods include complex model reconstruction or high-quality retraining on the new domains that makes it hard to implement or ensure high accuracy. This paper introduces a domain-model-based Bayesian network and related solutions to solve this problem. Our solutions make it easier to add new domains while ensure high accuracy like a flexible brain. The experimental results show that our solutions can ensure higher accuracy than the single model one. Furthermore, we also evaluated the network in transferring case and the result shows that the accuracy of our solutions is higher than the single transferred model.</description><identifier>ISSN: 0952-813X</identifier><identifier>EISSN: 1362-3079</identifier><identifier>DOI: 10.1080/0952813X.2021.1949753</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Bayesian analysis ; Bayesian network ; Brain ; Classification ; Deep learning ; Domains ; flexible brain ; Machine learning ; transferring</subject><ispartof>Journal of experimental & theoretical artificial intelligence, 2022-11, Vol.34 (6), p.1011-1028</ispartof><rights>2021 Informa UK Limited, trading as Taylor & Francis Group 2021</rights><rights>2021 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c216t-5d2c3851a750b7ee010463930de7aef157dff294cab93a499a61a6327e81e35f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Jin, Guanghao</creatorcontrib><creatorcontrib>Song, Qingzeng</creatorcontrib><title>Flexible brain: a domain-model based bayesian network for classification</title><title>Journal of experimental & theoretical artificial intelligence</title><description>Currently, deep learning methods have been widely applied to many fields like classification. Generally, these methods use the technology like transferring to make a model work well on different domains like building a strong brain. Existing transferring methods include complex model reconstruction or high-quality retraining on the new domains that makes it hard to implement or ensure high accuracy. This paper introduces a domain-model-based Bayesian network and related solutions to solve this problem. Our solutions make it easier to add new domains while ensure high accuracy like a flexible brain. The experimental results show that our solutions can ensure higher accuracy than the single model one. Furthermore, we also evaluated the network in transferring case and the result shows that the accuracy of our solutions is higher than the single transferred model.</description><subject>Bayesian analysis</subject><subject>Bayesian network</subject><subject>Brain</subject><subject>Classification</subject><subject>Deep learning</subject><subject>Domains</subject><subject>flexible brain</subject><subject>Machine learning</subject><subject>transferring</subject><issn>0952-813X</issn><issn>1362-3079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMouK7-BKHguWsmaZrGkyKuKyx4UfAWpm0CWdtkTbro_ntbdr16mZnDe294HyHXQBdAK3pLlWAV8I8FowwWoAolBT8hM-AlyzmV6pTMJk0-ic7JRUobSikIgBlZLTvz4-rOZHVE5-8yzNrQj1feh9Z0WY3JtOPcm-TQZ94M3yF-ZjbErOkwJWddg4ML_pKcWeySuTruOXlfPr09rvL16_PL48M6bxiUQy5a1vBKAEpBa2kMBVqUXHHaGonGgpCttUwVDdaKY6EUloAlZ9JUYLiwfE5uDrnbGL52Jg16E3bRjy81k1yUVckEH1XioGpiSCkaq7fR9Rj3GqieoOk_aHqCpo_QRt_9wef8WLHHsWzX6gH3XYg2om9c0vz_iF-pjHMc</recordid><startdate>20221102</startdate><enddate>20221102</enddate><creator>Jin, Guanghao</creator><creator>Song, Qingzeng</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20221102</creationdate><title>Flexible brain: a domain-model based bayesian network for classification</title><author>Jin, Guanghao ; Song, Qingzeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c216t-5d2c3851a750b7ee010463930de7aef157dff294cab93a499a61a6327e81e35f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bayesian analysis</topic><topic>Bayesian network</topic><topic>Brain</topic><topic>Classification</topic><topic>Deep learning</topic><topic>Domains</topic><topic>flexible brain</topic><topic>Machine learning</topic><topic>transferring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Guanghao</creatorcontrib><creatorcontrib>Song, Qingzeng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of experimental & theoretical artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Guanghao</au><au>Song, Qingzeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible brain: a domain-model based bayesian network for classification</atitle><jtitle>Journal of experimental & theoretical artificial intelligence</jtitle><date>2022-11-02</date><risdate>2022</risdate><volume>34</volume><issue>6</issue><spage>1011</spage><epage>1028</epage><pages>1011-1028</pages><issn>0952-813X</issn><eissn>1362-3079</eissn><abstract>Currently, deep learning methods have been widely applied to many fields like classification. Generally, these methods use the technology like transferring to make a model work well on different domains like building a strong brain. Existing transferring methods include complex model reconstruction or high-quality retraining on the new domains that makes it hard to implement or ensure high accuracy. This paper introduces a domain-model-based Bayesian network and related solutions to solve this problem. Our solutions make it easier to add new domains while ensure high accuracy like a flexible brain. The experimental results show that our solutions can ensure higher accuracy than the single model one. Furthermore, we also evaluated the network in transferring case and the result shows that the accuracy of our solutions is higher than the single transferred model.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/0952813X.2021.1949753</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0952-813X |
ispartof | Journal of experimental & theoretical artificial intelligence, 2022-11, Vol.34 (6), p.1011-1028 |
issn | 0952-813X 1362-3079 |
language | eng |
recordid | cdi_crossref_primary_10_1080_0952813X_2021_1949753 |
source | Business Source Complete |
subjects | Bayesian analysis Bayesian network Brain Classification Deep learning Domains flexible brain Machine learning transferring |
title | Flexible brain: a domain-model based bayesian network for classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T06%3A45%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible%20brain:%20a%20domain-model%20based%20bayesian%20network%20for%20classification&rft.jtitle=Journal%20of%20experimental%20&%20theoretical%20artificial%20intelligence&rft.au=Jin,%20Guanghao&rft.date=2022-11-02&rft.volume=34&rft.issue=6&rft.spage=1011&rft.epage=1028&rft.pages=1011-1028&rft.issn=0952-813X&rft.eissn=1362-3079&rft_id=info:doi/10.1080/0952813X.2021.1949753&rft_dat=%3Cproquest_cross%3E2735686253%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2735686253&rft_id=info:pmid/&rfr_iscdi=true |