Flexible brain: a domain-model based bayesian network for classification

Currently, deep learning methods have been widely applied to many fields like classification. Generally, these methods use the technology like transferring to make a model work well on different domains like building a strong brain. Existing transferring methods include complex model reconstruction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental & theoretical artificial intelligence 2022-11, Vol.34 (6), p.1011-1028
Hauptverfasser: Jin, Guanghao, Song, Qingzeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1028
container_issue 6
container_start_page 1011
container_title Journal of experimental & theoretical artificial intelligence
container_volume 34
creator Jin, Guanghao
Song, Qingzeng
description Currently, deep learning methods have been widely applied to many fields like classification. Generally, these methods use the technology like transferring to make a model work well on different domains like building a strong brain. Existing transferring methods include complex model reconstruction or high-quality retraining on the new domains that makes it hard to implement or ensure high accuracy. This paper introduces a domain-model-based Bayesian network and related solutions to solve this problem. Our solutions make it easier to add new domains while ensure high accuracy like a flexible brain. The experimental results show that our solutions can ensure higher accuracy than the single model one. Furthermore, we also evaluated the network in transferring case and the result shows that the accuracy of our solutions is higher than the single transferred model.
doi_str_mv 10.1080/0952813X.2021.1949753
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_0952813X_2021_1949753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2735686253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c216t-5d2c3851a750b7ee010463930de7aef157dff294cab93a499a61a6327e81e35f3</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-BKHguWsmaZrGkyKuKyx4UfAWpm0CWdtkTbro_ntbdr16mZnDe294HyHXQBdAK3pLlWAV8I8FowwWoAolBT8hM-AlyzmV6pTMJk0-ic7JRUobSikIgBlZLTvz4-rOZHVE5-8yzNrQj1feh9Z0WY3JtOPcm-TQZ94M3yF-ZjbErOkwJWddg4ML_pKcWeySuTruOXlfPr09rvL16_PL48M6bxiUQy5a1vBKAEpBa2kMBVqUXHHaGonGgpCttUwVDdaKY6EUloAlZ9JUYLiwfE5uDrnbGL52Jg16E3bRjy81k1yUVckEH1XioGpiSCkaq7fR9Rj3GqieoOk_aHqCpo_QRt_9wef8WLHHsWzX6gH3XYg2om9c0vz_iF-pjHMc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2735686253</pqid></control><display><type>article</type><title>Flexible brain: a domain-model based bayesian network for classification</title><source>Business Source Complete</source><creator>Jin, Guanghao ; Song, Qingzeng</creator><creatorcontrib>Jin, Guanghao ; Song, Qingzeng</creatorcontrib><description>Currently, deep learning methods have been widely applied to many fields like classification. Generally, these methods use the technology like transferring to make a model work well on different domains like building a strong brain. Existing transferring methods include complex model reconstruction or high-quality retraining on the new domains that makes it hard to implement or ensure high accuracy. This paper introduces a domain-model-based Bayesian network and related solutions to solve this problem. Our solutions make it easier to add new domains while ensure high accuracy like a flexible brain. The experimental results show that our solutions can ensure higher accuracy than the single model one. Furthermore, we also evaluated the network in transferring case and the result shows that the accuracy of our solutions is higher than the single transferred model.</description><identifier>ISSN: 0952-813X</identifier><identifier>EISSN: 1362-3079</identifier><identifier>DOI: 10.1080/0952813X.2021.1949753</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Bayesian analysis ; Bayesian network ; Brain ; Classification ; Deep learning ; Domains ; flexible brain ; Machine learning ; transferring</subject><ispartof>Journal of experimental &amp; theoretical artificial intelligence, 2022-11, Vol.34 (6), p.1011-1028</ispartof><rights>2021 Informa UK Limited, trading as Taylor &amp; Francis Group 2021</rights><rights>2021 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c216t-5d2c3851a750b7ee010463930de7aef157dff294cab93a499a61a6327e81e35f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Jin, Guanghao</creatorcontrib><creatorcontrib>Song, Qingzeng</creatorcontrib><title>Flexible brain: a domain-model based bayesian network for classification</title><title>Journal of experimental &amp; theoretical artificial intelligence</title><description>Currently, deep learning methods have been widely applied to many fields like classification. Generally, these methods use the technology like transferring to make a model work well on different domains like building a strong brain. Existing transferring methods include complex model reconstruction or high-quality retraining on the new domains that makes it hard to implement or ensure high accuracy. This paper introduces a domain-model-based Bayesian network and related solutions to solve this problem. Our solutions make it easier to add new domains while ensure high accuracy like a flexible brain. The experimental results show that our solutions can ensure higher accuracy than the single model one. Furthermore, we also evaluated the network in transferring case and the result shows that the accuracy of our solutions is higher than the single transferred model.</description><subject>Bayesian analysis</subject><subject>Bayesian network</subject><subject>Brain</subject><subject>Classification</subject><subject>Deep learning</subject><subject>Domains</subject><subject>flexible brain</subject><subject>Machine learning</subject><subject>transferring</subject><issn>0952-813X</issn><issn>1362-3079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMouK7-BKHguWsmaZrGkyKuKyx4UfAWpm0CWdtkTbro_ntbdr16mZnDe294HyHXQBdAK3pLlWAV8I8FowwWoAolBT8hM-AlyzmV6pTMJk0-ic7JRUobSikIgBlZLTvz4-rOZHVE5-8yzNrQj1feh9Z0WY3JtOPcm-TQZ94M3yF-ZjbErOkwJWddg4ML_pKcWeySuTruOXlfPr09rvL16_PL48M6bxiUQy5a1vBKAEpBa2kMBVqUXHHaGonGgpCttUwVDdaKY6EUloAlZ9JUYLiwfE5uDrnbGL52Jg16E3bRjy81k1yUVckEH1XioGpiSCkaq7fR9Rj3GqieoOk_aHqCpo_QRt_9wef8WLHHsWzX6gH3XYg2om9c0vz_iF-pjHMc</recordid><startdate>20221102</startdate><enddate>20221102</enddate><creator>Jin, Guanghao</creator><creator>Song, Qingzeng</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20221102</creationdate><title>Flexible brain: a domain-model based bayesian network for classification</title><author>Jin, Guanghao ; Song, Qingzeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c216t-5d2c3851a750b7ee010463930de7aef157dff294cab93a499a61a6327e81e35f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bayesian analysis</topic><topic>Bayesian network</topic><topic>Brain</topic><topic>Classification</topic><topic>Deep learning</topic><topic>Domains</topic><topic>flexible brain</topic><topic>Machine learning</topic><topic>transferring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Guanghao</creatorcontrib><creatorcontrib>Song, Qingzeng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of experimental &amp; theoretical artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Guanghao</au><au>Song, Qingzeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible brain: a domain-model based bayesian network for classification</atitle><jtitle>Journal of experimental &amp; theoretical artificial intelligence</jtitle><date>2022-11-02</date><risdate>2022</risdate><volume>34</volume><issue>6</issue><spage>1011</spage><epage>1028</epage><pages>1011-1028</pages><issn>0952-813X</issn><eissn>1362-3079</eissn><abstract>Currently, deep learning methods have been widely applied to many fields like classification. Generally, these methods use the technology like transferring to make a model work well on different domains like building a strong brain. Existing transferring methods include complex model reconstruction or high-quality retraining on the new domains that makes it hard to implement or ensure high accuracy. This paper introduces a domain-model-based Bayesian network and related solutions to solve this problem. Our solutions make it easier to add new domains while ensure high accuracy like a flexible brain. The experimental results show that our solutions can ensure higher accuracy than the single model one. Furthermore, we also evaluated the network in transferring case and the result shows that the accuracy of our solutions is higher than the single transferred model.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/0952813X.2021.1949753</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0952-813X
ispartof Journal of experimental & theoretical artificial intelligence, 2022-11, Vol.34 (6), p.1011-1028
issn 0952-813X
1362-3079
language eng
recordid cdi_crossref_primary_10_1080_0952813X_2021_1949753
source Business Source Complete
subjects Bayesian analysis
Bayesian network
Brain
Classification
Deep learning
Domains
flexible brain
Machine learning
transferring
title Flexible brain: a domain-model based bayesian network for classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T06%3A45%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible%20brain:%20a%20domain-model%20based%20bayesian%20network%20for%20classification&rft.jtitle=Journal%20of%20experimental%20&%20theoretical%20artificial%20intelligence&rft.au=Jin,%20Guanghao&rft.date=2022-11-02&rft.volume=34&rft.issue=6&rft.spage=1011&rft.epage=1028&rft.pages=1011-1028&rft.issn=0952-813X&rft.eissn=1362-3079&rft_id=info:doi/10.1080/0952813X.2021.1949753&rft_dat=%3Cproquest_cross%3E2735686253%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2735686253&rft_id=info:pmid/&rfr_iscdi=true