Large scale production of lacto-N-biose I, a building block of type I human milk oligosaccharides, using sugar phosphorylases
Human milk oligosaccharides (HMOs) have drawn attention for their contribution to the explosive bifidobacterial growth in the intestines of neonates. We found that bifidobacteria can efficiently metabolize lacto-N-biose I (LNB), the major building blocks of HMOs, and we have developed a method to sy...
Gespeichert in:
Veröffentlicht in: | Bioscience, Biotechnology, and Biochemistry Biotechnology, and Biochemistry, 2020-01, Vol.84 (1), p.17-24 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24 |
---|---|
container_issue | 1 |
container_start_page | 17 |
container_title | Bioscience, Biotechnology, and Biochemistry |
container_volume | 84 |
creator | Nishimoto, Mamoru |
description | Human milk oligosaccharides (HMOs) have drawn attention for their contribution to the explosive bifidobacterial growth in the intestines of neonates. We found that bifidobacteria can efficiently metabolize lacto-N-biose I (LNB), the major building blocks of HMOs, and we have developed a method to synthesize LNB by applying this system. We produced LNB on a kilogram scale by the method. This proved that, among the enterobacteria, only bifidobacteria can assimilate LNB, and provided the data that supported the explosive growth of bifidobacteria in neonates. Furthermore, we were also able to reveal the structure of LNB crystal and the low stability for heating at neutral pH, which has not been clarified so far. In this paper, using bifidobacteria and LNB as examples, I describe the research on oligosaccharide synthesis that was conducted by utilizing a sugar metabolism.
Abbreviations: LNB: lacto-N-biose I; GNB: galacto-N-biose; HMOs: human milk oligosaccharides; GLNBP: GNB/LNB phosphorylase; NahK: N-acetylhexosamine 1-kinase; GalT: UDP-glucose-hexose-1-phosphate uridylyltransferase; GalE: UDP-glucose 4-epimerase; SP: sucrose phosphorylase.
Lacto-N-biose I is produced from sucrose and N-acetylglucosamine with four enzymes. Catalytic amount of Inorganic phosphate and UDP-glucose are enough for this reaction. |
doi_str_mv | 10.1080/09168451.2019.1670047 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_09168451_2019_1670047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1080/09168451.2019.1670047</oup_id><sourcerecordid>2299449294</sourcerecordid><originalsourceid>FETCH-LOGICAL-c588t-bf1ab0f28759ac60db0a19401af7a7b4a4ceeaffb0fdd4681258f345da7ffc5d3</originalsourceid><addsrcrecordid>eNqNkM2O0zAUhS0EYsrAI4C8ZDEpdur8eAcaATNSBRtYWzf-aQ1OHHxjoS54dxy1M0vEwrJ0_Z1z5Y-Q15xtOevZOyZ524uGb2vG5Za3HWOie0I2fCe6qpWie0o2K1Ot0BV5gfiDsTJo-HNyteNN27JebMifPaSDpaghWDqnaLJefJxodDSAXmL1pRp8REvvbyjQIftg_HSgQ4j65wotp7m80WMeYaKjD2UY_CEiaH2E5I3FG5pxjWA-QKLzMWI56RQALb4kzxwEtK8u9zX5_unjt9u7av_18_3th32lm75fqsFxGJir-66RoFtmBgZcCsbBddANAoS2FpwrjDGi7Xnd9G4nGgOdc7oxu2vy9txbfvgrW1zU6FHbEGCyMaOqaymFkLUUBW3OqE4RMVmn5uRHSCfFmVrNqwfzajWvLuZL7s1lRR5Gax5TD6oLwM5AzPN_d74_R_zkYhrhd0zBqAVOISaXYNIeS_8_K_4C08GijQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299449294</pqid></control><display><type>article</type><title>Large scale production of lacto-N-biose I, a building block of type I human milk oligosaccharides, using sugar phosphorylases</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Open Access Titles of Japan</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Nishimoto, Mamoru</creator><creatorcontrib>Nishimoto, Mamoru</creatorcontrib><description>Human milk oligosaccharides (HMOs) have drawn attention for their contribution to the explosive bifidobacterial growth in the intestines of neonates. We found that bifidobacteria can efficiently metabolize lacto-N-biose I (LNB), the major building blocks of HMOs, and we have developed a method to synthesize LNB by applying this system. We produced LNB on a kilogram scale by the method. This proved that, among the enterobacteria, only bifidobacteria can assimilate LNB, and provided the data that supported the explosive growth of bifidobacteria in neonates. Furthermore, we were also able to reveal the structure of LNB crystal and the low stability for heating at neutral pH, which has not been clarified so far. In this paper, using bifidobacteria and LNB as examples, I describe the research on oligosaccharide synthesis that was conducted by utilizing a sugar metabolism.
Abbreviations: LNB: lacto-N-biose I; GNB: galacto-N-biose; HMOs: human milk oligosaccharides; GLNBP: GNB/LNB phosphorylase; NahK: N-acetylhexosamine 1-kinase; GalT: UDP-glucose-hexose-1-phosphate uridylyltransferase; GalE: UDP-glucose 4-epimerase; SP: sucrose phosphorylase.
Lacto-N-biose I is produced from sucrose and N-acetylglucosamine with four enzymes. Catalytic amount of Inorganic phosphate and UDP-glucose are enough for this reaction.</description><identifier>ISSN: 0916-8451</identifier><identifier>EISSN: 1347-6947</identifier><identifier>DOI: 10.1080/09168451.2019.1670047</identifier><identifier>PMID: 31566084</identifier><language>eng</language><publisher>England: Taylor & Francis</publisher><subject>Acetylglucosamine - analogs & derivatives ; Acetylglucosamine - chemical synthesis ; Acetylglucosamine - chemistry ; Acetylglucosamine - metabolism ; Anion Exchange Resins - chemistry ; Bifidobacterium - growth & development ; Bifidobacterium - metabolism ; Crystallization ; Disaccharidases - metabolism ; Gastrointestinal Microbiome - physiology ; Glucosyltransferases - chemistry ; growth factor for bifidobacteria ; Hot Temperature ; Humans ; Hydrogen-Ion Concentration ; Infant, Newborn ; Lacto-N-biose I ; Milk, Human - chemistry ; Oligosaccharides - metabolism ; Sucrose - chemistry ; sugar phosphorylase</subject><ispartof>Bioscience, Biotechnology, and Biochemistry, 2020-01, Vol.84 (1), p.17-24</ispartof><rights>2019 Japan Society for Bioscience, Biotechnology, and Agrochemistry 2019</rights><rights>2020 Japan Society for Bioscience, Biotechnology, and Agrochemistry 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c588t-bf1ab0f28759ac60db0a19401af7a7b4a4ceeaffb0fdd4681258f345da7ffc5d3</citedby><cites>FETCH-LOGICAL-c588t-bf1ab0f28759ac60db0a19401af7a7b4a4ceeaffb0fdd4681258f345da7ffc5d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>313,314,776,780,788,27899,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31566084$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nishimoto, Mamoru</creatorcontrib><title>Large scale production of lacto-N-biose I, a building block of type I human milk oligosaccharides, using sugar phosphorylases</title><title>Bioscience, Biotechnology, and Biochemistry</title><addtitle>Biosci Biotechnol Biochem</addtitle><description>Human milk oligosaccharides (HMOs) have drawn attention for their contribution to the explosive bifidobacterial growth in the intestines of neonates. We found that bifidobacteria can efficiently metabolize lacto-N-biose I (LNB), the major building blocks of HMOs, and we have developed a method to synthesize LNB by applying this system. We produced LNB on a kilogram scale by the method. This proved that, among the enterobacteria, only bifidobacteria can assimilate LNB, and provided the data that supported the explosive growth of bifidobacteria in neonates. Furthermore, we were also able to reveal the structure of LNB crystal and the low stability for heating at neutral pH, which has not been clarified so far. In this paper, using bifidobacteria and LNB as examples, I describe the research on oligosaccharide synthesis that was conducted by utilizing a sugar metabolism.
Abbreviations: LNB: lacto-N-biose I; GNB: galacto-N-biose; HMOs: human milk oligosaccharides; GLNBP: GNB/LNB phosphorylase; NahK: N-acetylhexosamine 1-kinase; GalT: UDP-glucose-hexose-1-phosphate uridylyltransferase; GalE: UDP-glucose 4-epimerase; SP: sucrose phosphorylase.
Lacto-N-biose I is produced from sucrose and N-acetylglucosamine with four enzymes. Catalytic amount of Inorganic phosphate and UDP-glucose are enough for this reaction.</description><subject>Acetylglucosamine - analogs & derivatives</subject><subject>Acetylglucosamine - chemical synthesis</subject><subject>Acetylglucosamine - chemistry</subject><subject>Acetylglucosamine - metabolism</subject><subject>Anion Exchange Resins - chemistry</subject><subject>Bifidobacterium - growth & development</subject><subject>Bifidobacterium - metabolism</subject><subject>Crystallization</subject><subject>Disaccharidases - metabolism</subject><subject>Gastrointestinal Microbiome - physiology</subject><subject>Glucosyltransferases - chemistry</subject><subject>growth factor for bifidobacteria</subject><subject>Hot Temperature</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>Infant, Newborn</subject><subject>Lacto-N-biose I</subject><subject>Milk, Human - chemistry</subject><subject>Oligosaccharides - metabolism</subject><subject>Sucrose - chemistry</subject><subject>sugar phosphorylase</subject><issn>0916-8451</issn><issn>1347-6947</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkM2O0zAUhS0EYsrAI4C8ZDEpdur8eAcaATNSBRtYWzf-aQ1OHHxjoS54dxy1M0vEwrJ0_Z1z5Y-Q15xtOevZOyZ524uGb2vG5Za3HWOie0I2fCe6qpWie0o2K1Ot0BV5gfiDsTJo-HNyteNN27JebMifPaSDpaghWDqnaLJefJxodDSAXmL1pRp8REvvbyjQIftg_HSgQ4j65wotp7m80WMeYaKjD2UY_CEiaH2E5I3FG5pxjWA-QKLzMWI56RQALb4kzxwEtK8u9zX5_unjt9u7av_18_3th32lm75fqsFxGJir-66RoFtmBgZcCsbBddANAoS2FpwrjDGi7Xnd9G4nGgOdc7oxu2vy9txbfvgrW1zU6FHbEGCyMaOqaymFkLUUBW3OqE4RMVmn5uRHSCfFmVrNqwfzajWvLuZL7s1lRR5Gax5TD6oLwM5AzPN_d74_R_zkYhrhd0zBqAVOISaXYNIeS_8_K_4C08GijQ</recordid><startdate>20200102</startdate><enddate>20200102</enddate><creator>Nishimoto, Mamoru</creator><general>Taylor & Francis</general><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20200102</creationdate><title>Large scale production of lacto-N-biose I, a building block of type I human milk oligosaccharides, using sugar phosphorylases</title><author>Nishimoto, Mamoru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c588t-bf1ab0f28759ac60db0a19401af7a7b4a4ceeaffb0fdd4681258f345da7ffc5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetylglucosamine - analogs & derivatives</topic><topic>Acetylglucosamine - chemical synthesis</topic><topic>Acetylglucosamine - chemistry</topic><topic>Acetylglucosamine - metabolism</topic><topic>Anion Exchange Resins - chemistry</topic><topic>Bifidobacterium - growth & development</topic><topic>Bifidobacterium - metabolism</topic><topic>Crystallization</topic><topic>Disaccharidases - metabolism</topic><topic>Gastrointestinal Microbiome - physiology</topic><topic>Glucosyltransferases - chemistry</topic><topic>growth factor for bifidobacteria</topic><topic>Hot Temperature</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>Infant, Newborn</topic><topic>Lacto-N-biose I</topic><topic>Milk, Human - chemistry</topic><topic>Oligosaccharides - metabolism</topic><topic>Sucrose - chemistry</topic><topic>sugar phosphorylase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nishimoto, Mamoru</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioscience, Biotechnology, and Biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nishimoto, Mamoru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large scale production of lacto-N-biose I, a building block of type I human milk oligosaccharides, using sugar phosphorylases</atitle><jtitle>Bioscience, Biotechnology, and Biochemistry</jtitle><addtitle>Biosci Biotechnol Biochem</addtitle><date>2020-01-02</date><risdate>2020</risdate><volume>84</volume><issue>1</issue><spage>17</spage><epage>24</epage><pages>17-24</pages><issn>0916-8451</issn><eissn>1347-6947</eissn><abstract>Human milk oligosaccharides (HMOs) have drawn attention for their contribution to the explosive bifidobacterial growth in the intestines of neonates. We found that bifidobacteria can efficiently metabolize lacto-N-biose I (LNB), the major building blocks of HMOs, and we have developed a method to synthesize LNB by applying this system. We produced LNB on a kilogram scale by the method. This proved that, among the enterobacteria, only bifidobacteria can assimilate LNB, and provided the data that supported the explosive growth of bifidobacteria in neonates. Furthermore, we were also able to reveal the structure of LNB crystal and the low stability for heating at neutral pH, which has not been clarified so far. In this paper, using bifidobacteria and LNB as examples, I describe the research on oligosaccharide synthesis that was conducted by utilizing a sugar metabolism.
Abbreviations: LNB: lacto-N-biose I; GNB: galacto-N-biose; HMOs: human milk oligosaccharides; GLNBP: GNB/LNB phosphorylase; NahK: N-acetylhexosamine 1-kinase; GalT: UDP-glucose-hexose-1-phosphate uridylyltransferase; GalE: UDP-glucose 4-epimerase; SP: sucrose phosphorylase.
Lacto-N-biose I is produced from sucrose and N-acetylglucosamine with four enzymes. Catalytic amount of Inorganic phosphate and UDP-glucose are enough for this reaction.</abstract><cop>England</cop><pub>Taylor & Francis</pub><pmid>31566084</pmid><doi>10.1080/09168451.2019.1670047</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0916-8451 |
ispartof | Bioscience, Biotechnology, and Biochemistry, 2020-01, Vol.84 (1), p.17-24 |
issn | 0916-8451 1347-6947 |
language | eng |
recordid | cdi_crossref_primary_10_1080_09168451_2019_1670047 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; Open Access Titles of Japan; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Acetylglucosamine - analogs & derivatives Acetylglucosamine - chemical synthesis Acetylglucosamine - chemistry Acetylglucosamine - metabolism Anion Exchange Resins - chemistry Bifidobacterium - growth & development Bifidobacterium - metabolism Crystallization Disaccharidases - metabolism Gastrointestinal Microbiome - physiology Glucosyltransferases - chemistry growth factor for bifidobacteria Hot Temperature Humans Hydrogen-Ion Concentration Infant, Newborn Lacto-N-biose I Milk, Human - chemistry Oligosaccharides - metabolism Sucrose - chemistry sugar phosphorylase |
title | Large scale production of lacto-N-biose I, a building block of type I human milk oligosaccharides, using sugar phosphorylases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T12%3A10%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20scale%20production%20of%20lacto-N-biose%20I,%20a%20building%20block%20of%20type%20I%20human%20milk%20oligosaccharides,%20using%20sugar%20phosphorylases&rft.jtitle=Bioscience,%20Biotechnology,%20and%20Biochemistry&rft.au=Nishimoto,%20Mamoru&rft.date=2020-01-02&rft.volume=84&rft.issue=1&rft.spage=17&rft.epage=24&rft.pages=17-24&rft.issn=0916-8451&rft.eissn=1347-6947&rft_id=info:doi/10.1080/09168451.2019.1670047&rft_dat=%3Cproquest_cross%3E2299449294%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2299449294&rft_id=info:pmid/31566084&rft_oup_id=10.1080/09168451.2019.1670047&rfr_iscdi=true |