Simultaneous Optimization of Mean and Standard Deviation

Checking whether process and product are satisfying or functioning according to the technical specification is not enough to assure competitiveness. Competition compels organizations to develop efforts to assure that product and process characteristics are on target values and the variability around...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quality engineering 2010-07, Vol.22 (3), p.140-149
1. Verfasser: Costa, Nuno Ricardo Pais
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 149
container_issue 3
container_start_page 140
container_title Quality engineering
container_volume 22
creator Costa, Nuno Ricardo Pais
description Checking whether process and product are satisfying or functioning according to the technical specification is not enough to assure competitiveness. Competition compels organizations to develop efforts to assure that product and process characteristics are on target values and the variability around those targets is minimal. This article proposes an alternative method for optimizing both the mean and standard deviation of a quality characteristic of the process or product. The objective function accommodates all the response types, allowing the practitioner to assign distinct weights to process mean and standard deviation and to find trade-off solutions between them, taking their relative magnitudes into account. Two classical examples from the literature are used to illustrate the feasibility of the proposed method and compare its results with those of other popular methods. A practical procedure for implementing the proposed method is also presented.
doi_str_mv 10.1080/08982110903394205
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_08982110903394205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2062996371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-6e7f7a21cfb6ac3c05ef5931650542efec0350d17768d348a92fec9be610d7663</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_wNvixdPqJNnNB3gRv6HSQ_Uc0mwCKbubmuyq9de7tZ4s2NPAzPO8zAxCpxguMAi4BCEFwRgkUCoLAuUeGuGSkrwghOyj0XqeDwA5REcpLQCwEJKOkJj5pq873drQp2y67Hzjv3TnQ5sFlz1b3Wa6rbLZQFQ6Vtmtffc_42N04HSd7MlvHaPX-7uXm8d8Mn14urme5KagvMuZ5Y5rgo2bM22ogdK6UlLMSigLYp01QEuoMOdMVLQQWpKhJ-eWYag4Y3SMzje5yxjeeps61fhkbF1vVlYShiwsudxJCskIZUzygTz7Qy5CH9vhDFVCIYpCDOQY4Q1kYkgpWqeW0Tc6rhQGtf652vr54FxtHN-6EBv9EWJdqU6v6hBd1K3xSdH_dL5T37JU99nRby7Cl1o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>504844862</pqid></control><display><type>article</type><title>Simultaneous Optimization of Mean and Standard Deviation</title><source>EBSCOhost Business Source Complete</source><creator>Costa, Nuno Ricardo Pais</creator><creatorcontrib>Costa, Nuno Ricardo Pais</creatorcontrib><description>Checking whether process and product are satisfying or functioning according to the technical specification is not enough to assure competitiveness. Competition compels organizations to develop efforts to assure that product and process characteristics are on target values and the variability around those targets is minimal. This article proposes an alternative method for optimizing both the mean and standard deviation of a quality characteristic of the process or product. The objective function accommodates all the response types, allowing the practitioner to assign distinct weights to process mean and standard deviation and to find trade-off solutions between them, taking their relative magnitudes into account. Two classical examples from the literature are used to illustrate the feasibility of the proposed method and compare its results with those of other popular methods. A practical procedure for implementing the proposed method is also presented.</description><identifier>ISSN: 0898-2112</identifier><identifier>EISSN: 1532-4222</identifier><identifier>DOI: 10.1080/08982110903394205</identifier><language>eng</language><publisher>Milwaukee: Taylor &amp; Francis Group</publisher><subject>Alternatives ; Competition ; dual response ; Feasibility ; GRG ; Optimization ; Organizations ; Product quality ; response surface ; robust design ; Specifications ; Standard deviation ; Studies ; Tradeoffs</subject><ispartof>Quality engineering, 2010-07, Vol.22 (3), p.140-149</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2010</rights><rights>Copyright Taylor &amp; Francis Ltd. Jul 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-6e7f7a21cfb6ac3c05ef5931650542efec0350d17768d348a92fec9be610d7663</citedby><cites>FETCH-LOGICAL-c437t-6e7f7a21cfb6ac3c05ef5931650542efec0350d17768d348a92fec9be610d7663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Costa, Nuno Ricardo Pais</creatorcontrib><title>Simultaneous Optimization of Mean and Standard Deviation</title><title>Quality engineering</title><description>Checking whether process and product are satisfying or functioning according to the technical specification is not enough to assure competitiveness. Competition compels organizations to develop efforts to assure that product and process characteristics are on target values and the variability around those targets is minimal. This article proposes an alternative method for optimizing both the mean and standard deviation of a quality characteristic of the process or product. The objective function accommodates all the response types, allowing the practitioner to assign distinct weights to process mean and standard deviation and to find trade-off solutions between them, taking their relative magnitudes into account. Two classical examples from the literature are used to illustrate the feasibility of the proposed method and compare its results with those of other popular methods. A practical procedure for implementing the proposed method is also presented.</description><subject>Alternatives</subject><subject>Competition</subject><subject>dual response</subject><subject>Feasibility</subject><subject>GRG</subject><subject>Optimization</subject><subject>Organizations</subject><subject>Product quality</subject><subject>response surface</subject><subject>robust design</subject><subject>Specifications</subject><subject>Standard deviation</subject><subject>Studies</subject><subject>Tradeoffs</subject><issn>0898-2112</issn><issn>1532-4222</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_wNvixdPqJNnNB3gRv6HSQ_Uc0mwCKbubmuyq9de7tZ4s2NPAzPO8zAxCpxguMAi4BCEFwRgkUCoLAuUeGuGSkrwghOyj0XqeDwA5REcpLQCwEJKOkJj5pq873drQp2y67Hzjv3TnQ5sFlz1b3Wa6rbLZQFQ6Vtmtffc_42N04HSd7MlvHaPX-7uXm8d8Mn14urme5KagvMuZ5Y5rgo2bM22ogdK6UlLMSigLYp01QEuoMOdMVLQQWpKhJ-eWYag4Y3SMzje5yxjeeps61fhkbF1vVlYShiwsudxJCskIZUzygTz7Qy5CH9vhDFVCIYpCDOQY4Q1kYkgpWqeW0Tc6rhQGtf652vr54FxtHN-6EBv9EWJdqU6v6hBd1K3xSdH_dL5T37JU99nRby7Cl1o</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Costa, Nuno Ricardo Pais</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>U9A</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>201007</creationdate><title>Simultaneous Optimization of Mean and Standard Deviation</title><author>Costa, Nuno Ricardo Pais</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-6e7f7a21cfb6ac3c05ef5931650542efec0350d17768d348a92fec9be610d7663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Alternatives</topic><topic>Competition</topic><topic>dual response</topic><topic>Feasibility</topic><topic>GRG</topic><topic>Optimization</topic><topic>Organizations</topic><topic>Product quality</topic><topic>response surface</topic><topic>robust design</topic><topic>Specifications</topic><topic>Standard deviation</topic><topic>Studies</topic><topic>Tradeoffs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Costa, Nuno Ricardo Pais</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Quality engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Costa, Nuno Ricardo Pais</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous Optimization of Mean and Standard Deviation</atitle><jtitle>Quality engineering</jtitle><date>2010-07</date><risdate>2010</risdate><volume>22</volume><issue>3</issue><spage>140</spage><epage>149</epage><pages>140-149</pages><issn>0898-2112</issn><eissn>1532-4222</eissn><abstract>Checking whether process and product are satisfying or functioning according to the technical specification is not enough to assure competitiveness. Competition compels organizations to develop efforts to assure that product and process characteristics are on target values and the variability around those targets is minimal. This article proposes an alternative method for optimizing both the mean and standard deviation of a quality characteristic of the process or product. The objective function accommodates all the response types, allowing the practitioner to assign distinct weights to process mean and standard deviation and to find trade-off solutions between them, taking their relative magnitudes into account. Two classical examples from the literature are used to illustrate the feasibility of the proposed method and compare its results with those of other popular methods. A practical procedure for implementing the proposed method is also presented.</abstract><cop>Milwaukee</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/08982110903394205</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0898-2112
ispartof Quality engineering, 2010-07, Vol.22 (3), p.140-149
issn 0898-2112
1532-4222
language eng
recordid cdi_crossref_primary_10_1080_08982110903394205
source EBSCOhost Business Source Complete
subjects Alternatives
Competition
dual response
Feasibility
GRG
Optimization
Organizations
Product quality
response surface
robust design
Specifications
Standard deviation
Studies
Tradeoffs
title Simultaneous Optimization of Mean and Standard Deviation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T06%3A39%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20Optimization%20of%20Mean%20and%20Standard%20Deviation&rft.jtitle=Quality%20engineering&rft.au=Costa,%20Nuno%20Ricardo%20Pais&rft.date=2010-07&rft.volume=22&rft.issue=3&rft.spage=140&rft.epage=149&rft.pages=140-149&rft.issn=0898-2112&rft.eissn=1532-4222&rft_id=info:doi/10.1080/08982110903394205&rft_dat=%3Cproquest_cross%3E2062996371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=504844862&rft_id=info:pmid/&rfr_iscdi=true