Simultaneous Optimization of Mean and Standard Deviation
Checking whether process and product are satisfying or functioning according to the technical specification is not enough to assure competitiveness. Competition compels organizations to develop efforts to assure that product and process characteristics are on target values and the variability around...
Gespeichert in:
Veröffentlicht in: | Quality engineering 2010-07, Vol.22 (3), p.140-149 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 149 |
---|---|
container_issue | 3 |
container_start_page | 140 |
container_title | Quality engineering |
container_volume | 22 |
creator | Costa, Nuno Ricardo Pais |
description | Checking whether process and product are satisfying or functioning according to the technical specification is not enough to assure competitiveness. Competition compels organizations to develop efforts to assure that product and process characteristics are on target values and the variability around those targets is minimal. This article proposes an alternative method for optimizing both the mean and standard deviation of a quality characteristic of the process or product. The objective function accommodates all the response types, allowing the practitioner to assign distinct weights to process mean and standard deviation and to find trade-off solutions between them, taking their relative magnitudes into account. Two classical examples from the literature are used to illustrate the feasibility of the proposed method and compare its results with those of other popular methods. A practical procedure for implementing the proposed method is also presented. |
doi_str_mv | 10.1080/08982110903394205 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_08982110903394205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2062996371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-6e7f7a21cfb6ac3c05ef5931650542efec0350d17768d348a92fec9be610d7663</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_wNvixdPqJNnNB3gRv6HSQ_Uc0mwCKbubmuyq9de7tZ4s2NPAzPO8zAxCpxguMAi4BCEFwRgkUCoLAuUeGuGSkrwghOyj0XqeDwA5REcpLQCwEJKOkJj5pq873drQp2y67Hzjv3TnQ5sFlz1b3Wa6rbLZQFQ6Vtmtffc_42N04HSd7MlvHaPX-7uXm8d8Mn14urme5KagvMuZ5Y5rgo2bM22ogdK6UlLMSigLYp01QEuoMOdMVLQQWpKhJ-eWYag4Y3SMzje5yxjeeps61fhkbF1vVlYShiwsudxJCskIZUzygTz7Qy5CH9vhDFVCIYpCDOQY4Q1kYkgpWqeW0Tc6rhQGtf652vr54FxtHN-6EBv9EWJdqU6v6hBd1K3xSdH_dL5T37JU99nRby7Cl1o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>504844862</pqid></control><display><type>article</type><title>Simultaneous Optimization of Mean and Standard Deviation</title><source>EBSCOhost Business Source Complete</source><creator>Costa, Nuno Ricardo Pais</creator><creatorcontrib>Costa, Nuno Ricardo Pais</creatorcontrib><description>Checking whether process and product are satisfying or functioning according to the technical specification is not enough to assure competitiveness. Competition compels organizations to develop efforts to assure that product and process characteristics are on target values and the variability around those targets is minimal. This article proposes an alternative method for optimizing both the mean and standard deviation of a quality characteristic of the process or product. The objective function accommodates all the response types, allowing the practitioner to assign distinct weights to process mean and standard deviation and to find trade-off solutions between them, taking their relative magnitudes into account. Two classical examples from the literature are used to illustrate the feasibility of the proposed method and compare its results with those of other popular methods. A practical procedure for implementing the proposed method is also presented.</description><identifier>ISSN: 0898-2112</identifier><identifier>EISSN: 1532-4222</identifier><identifier>DOI: 10.1080/08982110903394205</identifier><language>eng</language><publisher>Milwaukee: Taylor & Francis Group</publisher><subject>Alternatives ; Competition ; dual response ; Feasibility ; GRG ; Optimization ; Organizations ; Product quality ; response surface ; robust design ; Specifications ; Standard deviation ; Studies ; Tradeoffs</subject><ispartof>Quality engineering, 2010-07, Vol.22 (3), p.140-149</ispartof><rights>Copyright Taylor & Francis Group, LLC 2010</rights><rights>Copyright Taylor & Francis Ltd. Jul 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-6e7f7a21cfb6ac3c05ef5931650542efec0350d17768d348a92fec9be610d7663</citedby><cites>FETCH-LOGICAL-c437t-6e7f7a21cfb6ac3c05ef5931650542efec0350d17768d348a92fec9be610d7663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Costa, Nuno Ricardo Pais</creatorcontrib><title>Simultaneous Optimization of Mean and Standard Deviation</title><title>Quality engineering</title><description>Checking whether process and product are satisfying or functioning according to the technical specification is not enough to assure competitiveness. Competition compels organizations to develop efforts to assure that product and process characteristics are on target values and the variability around those targets is minimal. This article proposes an alternative method for optimizing both the mean and standard deviation of a quality characteristic of the process or product. The objective function accommodates all the response types, allowing the practitioner to assign distinct weights to process mean and standard deviation and to find trade-off solutions between them, taking their relative magnitudes into account. Two classical examples from the literature are used to illustrate the feasibility of the proposed method and compare its results with those of other popular methods. A practical procedure for implementing the proposed method is also presented.</description><subject>Alternatives</subject><subject>Competition</subject><subject>dual response</subject><subject>Feasibility</subject><subject>GRG</subject><subject>Optimization</subject><subject>Organizations</subject><subject>Product quality</subject><subject>response surface</subject><subject>robust design</subject><subject>Specifications</subject><subject>Standard deviation</subject><subject>Studies</subject><subject>Tradeoffs</subject><issn>0898-2112</issn><issn>1532-4222</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_wNvixdPqJNnNB3gRv6HSQ_Uc0mwCKbubmuyq9de7tZ4s2NPAzPO8zAxCpxguMAi4BCEFwRgkUCoLAuUeGuGSkrwghOyj0XqeDwA5REcpLQCwEJKOkJj5pq873drQp2y67Hzjv3TnQ5sFlz1b3Wa6rbLZQFQ6Vtmtffc_42N04HSd7MlvHaPX-7uXm8d8Mn14urme5KagvMuZ5Y5rgo2bM22ogdK6UlLMSigLYp01QEuoMOdMVLQQWpKhJ-eWYag4Y3SMzje5yxjeeps61fhkbF1vVlYShiwsudxJCskIZUzygTz7Qy5CH9vhDFVCIYpCDOQY4Q1kYkgpWqeW0Tc6rhQGtf652vr54FxtHN-6EBv9EWJdqU6v6hBd1K3xSdH_dL5T37JU99nRby7Cl1o</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Costa, Nuno Ricardo Pais</creator><general>Taylor & Francis Group</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>U9A</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>201007</creationdate><title>Simultaneous Optimization of Mean and Standard Deviation</title><author>Costa, Nuno Ricardo Pais</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-6e7f7a21cfb6ac3c05ef5931650542efec0350d17768d348a92fec9be610d7663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Alternatives</topic><topic>Competition</topic><topic>dual response</topic><topic>Feasibility</topic><topic>GRG</topic><topic>Optimization</topic><topic>Organizations</topic><topic>Product quality</topic><topic>response surface</topic><topic>robust design</topic><topic>Specifications</topic><topic>Standard deviation</topic><topic>Studies</topic><topic>Tradeoffs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Costa, Nuno Ricardo Pais</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Quality engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Costa, Nuno Ricardo Pais</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous Optimization of Mean and Standard Deviation</atitle><jtitle>Quality engineering</jtitle><date>2010-07</date><risdate>2010</risdate><volume>22</volume><issue>3</issue><spage>140</spage><epage>149</epage><pages>140-149</pages><issn>0898-2112</issn><eissn>1532-4222</eissn><abstract>Checking whether process and product are satisfying or functioning according to the technical specification is not enough to assure competitiveness. Competition compels organizations to develop efforts to assure that product and process characteristics are on target values and the variability around those targets is minimal. This article proposes an alternative method for optimizing both the mean and standard deviation of a quality characteristic of the process or product. The objective function accommodates all the response types, allowing the practitioner to assign distinct weights to process mean and standard deviation and to find trade-off solutions between them, taking their relative magnitudes into account. Two classical examples from the literature are used to illustrate the feasibility of the proposed method and compare its results with those of other popular methods. A practical procedure for implementing the proposed method is also presented.</abstract><cop>Milwaukee</cop><pub>Taylor & Francis Group</pub><doi>10.1080/08982110903394205</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-2112 |
ispartof | Quality engineering, 2010-07, Vol.22 (3), p.140-149 |
issn | 0898-2112 1532-4222 |
language | eng |
recordid | cdi_crossref_primary_10_1080_08982110903394205 |
source | EBSCOhost Business Source Complete |
subjects | Alternatives Competition dual response Feasibility GRG Optimization Organizations Product quality response surface robust design Specifications Standard deviation Studies Tradeoffs |
title | Simultaneous Optimization of Mean and Standard Deviation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T06%3A39%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20Optimization%20of%20Mean%20and%20Standard%20Deviation&rft.jtitle=Quality%20engineering&rft.au=Costa,%20Nuno%20Ricardo%20Pais&rft.date=2010-07&rft.volume=22&rft.issue=3&rft.spage=140&rft.epage=149&rft.pages=140-149&rft.issn=0898-2112&rft.eissn=1532-4222&rft_id=info:doi/10.1080/08982110903394205&rft_dat=%3Cproquest_cross%3E2062996371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=504844862&rft_id=info:pmid/&rfr_iscdi=true |