HYBRID GREY RELATIONAL ARTIFICIAL NEURAL NETWORK AND AUTO REGRESSIVE INTEGRATED MOVING AVERAGE MODEL FOR FORECASTING TIME-SERIES DATA

The aim of this study is to develop a new hybrid model by combining a linear and nonlinear model for forecasting time-series data. The proposed model (GRANN_ARIMA) integrates nonlinear grey relational artificial neural network (GRANN) and a linear autoregressive integrated moving average (ARIMA) mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied artificial intelligence 2009-05, Vol.23 (5), p.443-486
Hauptverfasser: Sallehuddin, Roselina, Hj. Shamsuddin, Siti Mariyam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 486
container_issue 5
container_start_page 443
container_title Applied artificial intelligence
container_volume 23
creator Sallehuddin, Roselina
Hj. Shamsuddin, Siti Mariyam
description The aim of this study is to develop a new hybrid model by combining a linear and nonlinear model for forecasting time-series data. The proposed model (GRANN_ARIMA) integrates nonlinear grey relational artificial neural network (GRANN) and a linear autoregressive integrated moving average (ARIMA) model by combining new features and grey relational analysis to select the appropriate inputs and hybridization succession. To validate the performance of the proposed model, small and large scale data sets are used. The forecasting performance is compared with several models, and these include: individual models (ARIMA, multiple regression, GRANN), several hybrid models (MARMA, MR_ANN, ARIMA_ANN), and an artificial neural network (ANN) trained using a Levenberg Marquardt algorithm. The experiments have shown that the proposed model has outperformed other models with 99.5% forecasting accuracy for small-scale data and 99.84% for large-scale data. The obtained empirical results have proven that the GRANN_ARIMA model can provide a better alternative for time-series forecasting due to its promising performance and capability in handling time-series data for both small- and large-scale data.
doi_str_mv 10.1080/08839510902879384
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_08839510902879384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34871593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-4b844496310c9fe2aeaac1cd3566975ddbdf41a21b656009637c64b9870375a23</originalsourceid><addsrcrecordid>eNqFkc2O0zAURi0EEmXgAdhZLNiFsWMndiQ2pnE7FplEctyiWUVufqSO0mawU8E8wLw3LmXFCLGwrq--c64tXQDeY_QJI46uEeckSzDKUMxZRjh9ARYhYFGa0OQlWJzzKAD0NXjj_T1CCDOGF-Dp5u6LVjlca3kHtSyEUVUpCii0USu1VOFayo3-Xcy3Sn-Fosyh2Jgq0EGqa7WVUJUmNMLIHN5WW1WuodhKLdYytLks4KrS5yOXojbn1KhbGdVSK1nDXBjxFrwa7Oj7d3_qFdispFneREW1VktRRC2lbI7ojlNKs5Rg1GZDH9ve2ha3HUnSNGNJ1-26gWIb412apAgFkLUp3WWcIcISG5Mr8PEy98FN30-9n5vD3rf9ONpjP518QyhnOMlIAD_8Bd5PJ3cMf2tinPAUMcIDhC9Q6ybvXT80D25_sO6xwag5b6V5tpXgsIuzPw6TO9gfkxu7ZraP4-QGZ4_t3j-3mvnnHMzP_zXJvx_-BUVEmKE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215860738</pqid></control><display><type>article</type><title>HYBRID GREY RELATIONAL ARTIFICIAL NEURAL NETWORK AND AUTO REGRESSIVE INTEGRATED MOVING AVERAGE MODEL FOR FORECASTING TIME-SERIES DATA</title><source>EBSCOhost Business Source Complete</source><creator>Sallehuddin, Roselina ; Hj. Shamsuddin, Siti Mariyam</creator><creatorcontrib>Sallehuddin, Roselina ; Hj. Shamsuddin, Siti Mariyam</creatorcontrib><description>The aim of this study is to develop a new hybrid model by combining a linear and nonlinear model for forecasting time-series data. The proposed model (GRANN_ARIMA) integrates nonlinear grey relational artificial neural network (GRANN) and a linear autoregressive integrated moving average (ARIMA) model by combining new features and grey relational analysis to select the appropriate inputs and hybridization succession. To validate the performance of the proposed model, small and large scale data sets are used. The forecasting performance is compared with several models, and these include: individual models (ARIMA, multiple regression, GRANN), several hybrid models (MARMA, MR_ANN, ARIMA_ANN), and an artificial neural network (ANN) trained using a Levenberg Marquardt algorithm. The experiments have shown that the proposed model has outperformed other models with 99.5% forecasting accuracy for small-scale data and 99.84% for large-scale data. The obtained empirical results have proven that the GRANN_ARIMA model can provide a better alternative for time-series forecasting due to its promising performance and capability in handling time-series data for both small- and large-scale data.</description><identifier>ISSN: 0883-9514</identifier><identifier>EISSN: 1087-6545</identifier><identifier>DOI: 10.1080/08839510902879384</identifier><language>eng</language><publisher>Philadelphia: Taylor &amp; Francis Group</publisher><subject>Accuracy ; Artificial intelligence ; Forecasting techniques ; Neural networks ; Regression analysis ; Time series</subject><ispartof>Applied artificial intelligence, 2009-05, Vol.23 (5), p.443-486</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2009</rights><rights>Copyright Taylor &amp; Francis Ltd. 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-4b844496310c9fe2aeaac1cd3566975ddbdf41a21b656009637c64b9870375a23</citedby><cites>FETCH-LOGICAL-c447t-4b844496310c9fe2aeaac1cd3566975ddbdf41a21b656009637c64b9870375a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sallehuddin, Roselina</creatorcontrib><creatorcontrib>Hj. Shamsuddin, Siti Mariyam</creatorcontrib><title>HYBRID GREY RELATIONAL ARTIFICIAL NEURAL NETWORK AND AUTO REGRESSIVE INTEGRATED MOVING AVERAGE MODEL FOR FORECASTING TIME-SERIES DATA</title><title>Applied artificial intelligence</title><description>The aim of this study is to develop a new hybrid model by combining a linear and nonlinear model for forecasting time-series data. The proposed model (GRANN_ARIMA) integrates nonlinear grey relational artificial neural network (GRANN) and a linear autoregressive integrated moving average (ARIMA) model by combining new features and grey relational analysis to select the appropriate inputs and hybridization succession. To validate the performance of the proposed model, small and large scale data sets are used. The forecasting performance is compared with several models, and these include: individual models (ARIMA, multiple regression, GRANN), several hybrid models (MARMA, MR_ANN, ARIMA_ANN), and an artificial neural network (ANN) trained using a Levenberg Marquardt algorithm. The experiments have shown that the proposed model has outperformed other models with 99.5% forecasting accuracy for small-scale data and 99.84% for large-scale data. The obtained empirical results have proven that the GRANN_ARIMA model can provide a better alternative for time-series forecasting due to its promising performance and capability in handling time-series data for both small- and large-scale data.</description><subject>Accuracy</subject><subject>Artificial intelligence</subject><subject>Forecasting techniques</subject><subject>Neural networks</subject><subject>Regression analysis</subject><subject>Time series</subject><issn>0883-9514</issn><issn>1087-6545</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkc2O0zAURi0EEmXgAdhZLNiFsWMndiQ2pnE7FplEctyiWUVufqSO0mawU8E8wLw3LmXFCLGwrq--c64tXQDeY_QJI46uEeckSzDKUMxZRjh9ARYhYFGa0OQlWJzzKAD0NXjj_T1CCDOGF-Dp5u6LVjlca3kHtSyEUVUpCii0USu1VOFayo3-Xcy3Sn-Fosyh2Jgq0EGqa7WVUJUmNMLIHN5WW1WuodhKLdYytLks4KrS5yOXojbn1KhbGdVSK1nDXBjxFrwa7Oj7d3_qFdispFneREW1VktRRC2lbI7ojlNKs5Rg1GZDH9ve2ha3HUnSNGNJ1-26gWIb412apAgFkLUp3WWcIcISG5Mr8PEy98FN30-9n5vD3rf9ONpjP518QyhnOMlIAD_8Bd5PJ3cMf2tinPAUMcIDhC9Q6ybvXT80D25_sO6xwag5b6V5tpXgsIuzPw6TO9gfkxu7ZraP4-QGZ4_t3j-3mvnnHMzP_zXJvx_-BUVEmKE</recordid><startdate>20090504</startdate><enddate>20090504</enddate><creator>Sallehuddin, Roselina</creator><creator>Hj. Shamsuddin, Siti Mariyam</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090504</creationdate><title>HYBRID GREY RELATIONAL ARTIFICIAL NEURAL NETWORK AND AUTO REGRESSIVE INTEGRATED MOVING AVERAGE MODEL FOR FORECASTING TIME-SERIES DATA</title><author>Sallehuddin, Roselina ; Hj. Shamsuddin, Siti Mariyam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-4b844496310c9fe2aeaac1cd3566975ddbdf41a21b656009637c64b9870375a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Accuracy</topic><topic>Artificial intelligence</topic><topic>Forecasting techniques</topic><topic>Neural networks</topic><topic>Regression analysis</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sallehuddin, Roselina</creatorcontrib><creatorcontrib>Hj. Shamsuddin, Siti Mariyam</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Applied artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sallehuddin, Roselina</au><au>Hj. Shamsuddin, Siti Mariyam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HYBRID GREY RELATIONAL ARTIFICIAL NEURAL NETWORK AND AUTO REGRESSIVE INTEGRATED MOVING AVERAGE MODEL FOR FORECASTING TIME-SERIES DATA</atitle><jtitle>Applied artificial intelligence</jtitle><date>2009-05-04</date><risdate>2009</risdate><volume>23</volume><issue>5</issue><spage>443</spage><epage>486</epage><pages>443-486</pages><issn>0883-9514</issn><eissn>1087-6545</eissn><abstract>The aim of this study is to develop a new hybrid model by combining a linear and nonlinear model for forecasting time-series data. The proposed model (GRANN_ARIMA) integrates nonlinear grey relational artificial neural network (GRANN) and a linear autoregressive integrated moving average (ARIMA) model by combining new features and grey relational analysis to select the appropriate inputs and hybridization succession. To validate the performance of the proposed model, small and large scale data sets are used. The forecasting performance is compared with several models, and these include: individual models (ARIMA, multiple regression, GRANN), several hybrid models (MARMA, MR_ANN, ARIMA_ANN), and an artificial neural network (ANN) trained using a Levenberg Marquardt algorithm. The experiments have shown that the proposed model has outperformed other models with 99.5% forecasting accuracy for small-scale data and 99.84% for large-scale data. The obtained empirical results have proven that the GRANN_ARIMA model can provide a better alternative for time-series forecasting due to its promising performance and capability in handling time-series data for both small- and large-scale data.</abstract><cop>Philadelphia</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/08839510902879384</doi><tpages>44</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0883-9514
ispartof Applied artificial intelligence, 2009-05, Vol.23 (5), p.443-486
issn 0883-9514
1087-6545
language eng
recordid cdi_crossref_primary_10_1080_08839510902879384
source EBSCOhost Business Source Complete
subjects Accuracy
Artificial intelligence
Forecasting techniques
Neural networks
Regression analysis
Time series
title HYBRID GREY RELATIONAL ARTIFICIAL NEURAL NETWORK AND AUTO REGRESSIVE INTEGRATED MOVING AVERAGE MODEL FOR FORECASTING TIME-SERIES DATA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A32%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HYBRID%20GREY%20RELATIONAL%20ARTIFICIAL%20NEURAL%20NETWORK%20AND%20AUTO%20REGRESSIVE%20INTEGRATED%20MOVING%20AVERAGE%20MODEL%20FOR%20FORECASTING%20TIME-SERIES%20DATA&rft.jtitle=Applied%20artificial%20intelligence&rft.au=Sallehuddin,%20Roselina&rft.date=2009-05-04&rft.volume=23&rft.issue=5&rft.spage=443&rft.epage=486&rft.pages=443-486&rft.issn=0883-9514&rft.eissn=1087-6545&rft_id=info:doi/10.1080/08839510902879384&rft_dat=%3Cproquest_cross%3E34871593%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215860738&rft_id=info:pmid/&rfr_iscdi=true