HYBRID GREY RELATIONAL ARTIFICIAL NEURAL NETWORK AND AUTO REGRESSIVE INTEGRATED MOVING AVERAGE MODEL FOR FORECASTING TIME-SERIES DATA
The aim of this study is to develop a new hybrid model by combining a linear and nonlinear model for forecasting time-series data. The proposed model (GRANN_ARIMA) integrates nonlinear grey relational artificial neural network (GRANN) and a linear autoregressive integrated moving average (ARIMA) mod...
Gespeichert in:
Veröffentlicht in: | Applied artificial intelligence 2009-05, Vol.23 (5), p.443-486 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 486 |
---|---|
container_issue | 5 |
container_start_page | 443 |
container_title | Applied artificial intelligence |
container_volume | 23 |
creator | Sallehuddin, Roselina Hj. Shamsuddin, Siti Mariyam |
description | The aim of this study is to develop a new hybrid model by combining a linear and nonlinear model for forecasting time-series data. The proposed model (GRANN_ARIMA) integrates nonlinear grey relational artificial neural network (GRANN) and a linear autoregressive integrated moving average (ARIMA) model by combining new features and grey relational analysis to select the appropriate inputs and hybridization succession. To validate the performance of the proposed model, small and large scale data sets are used. The forecasting performance is compared with several models, and these include: individual models (ARIMA, multiple regression, GRANN), several hybrid models (MARMA, MR_ANN, ARIMA_ANN), and an artificial neural network (ANN) trained using a Levenberg Marquardt algorithm. The experiments have shown that the proposed model has outperformed other models with 99.5% forecasting accuracy for small-scale data and 99.84% for large-scale data. The obtained empirical results have proven that the GRANN_ARIMA model can provide a better alternative for time-series forecasting due to its promising performance and capability in handling time-series data for both small- and large-scale data. |
doi_str_mv | 10.1080/08839510902879384 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_08839510902879384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34871593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-4b844496310c9fe2aeaac1cd3566975ddbdf41a21b656009637c64b9870375a23</originalsourceid><addsrcrecordid>eNqFkc2O0zAURi0EEmXgAdhZLNiFsWMndiQ2pnE7FplEctyiWUVufqSO0mawU8E8wLw3LmXFCLGwrq--c64tXQDeY_QJI46uEeckSzDKUMxZRjh9ARYhYFGa0OQlWJzzKAD0NXjj_T1CCDOGF-Dp5u6LVjlca3kHtSyEUVUpCii0USu1VOFayo3-Xcy3Sn-Fosyh2Jgq0EGqa7WVUJUmNMLIHN5WW1WuodhKLdYytLks4KrS5yOXojbn1KhbGdVSK1nDXBjxFrwa7Oj7d3_qFdispFneREW1VktRRC2lbI7ojlNKs5Rg1GZDH9ve2ha3HUnSNGNJ1-26gWIb412apAgFkLUp3WWcIcISG5Mr8PEy98FN30-9n5vD3rf9ONpjP518QyhnOMlIAD_8Bd5PJ3cMf2tinPAUMcIDhC9Q6ybvXT80D25_sO6xwag5b6V5tpXgsIuzPw6TO9gfkxu7ZraP4-QGZ4_t3j-3mvnnHMzP_zXJvx_-BUVEmKE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215860738</pqid></control><display><type>article</type><title>HYBRID GREY RELATIONAL ARTIFICIAL NEURAL NETWORK AND AUTO REGRESSIVE INTEGRATED MOVING AVERAGE MODEL FOR FORECASTING TIME-SERIES DATA</title><source>EBSCOhost Business Source Complete</source><creator>Sallehuddin, Roselina ; Hj. Shamsuddin, Siti Mariyam</creator><creatorcontrib>Sallehuddin, Roselina ; Hj. Shamsuddin, Siti Mariyam</creatorcontrib><description>The aim of this study is to develop a new hybrid model by combining a linear and nonlinear model for forecasting time-series data. The proposed model (GRANN_ARIMA) integrates nonlinear grey relational artificial neural network (GRANN) and a linear autoregressive integrated moving average (ARIMA) model by combining new features and grey relational analysis to select the appropriate inputs and hybridization succession. To validate the performance of the proposed model, small and large scale data sets are used. The forecasting performance is compared with several models, and these include: individual models (ARIMA, multiple regression, GRANN), several hybrid models (MARMA, MR_ANN, ARIMA_ANN), and an artificial neural network (ANN) trained using a Levenberg Marquardt algorithm. The experiments have shown that the proposed model has outperformed other models with 99.5% forecasting accuracy for small-scale data and 99.84% for large-scale data. The obtained empirical results have proven that the GRANN_ARIMA model can provide a better alternative for time-series forecasting due to its promising performance and capability in handling time-series data for both small- and large-scale data.</description><identifier>ISSN: 0883-9514</identifier><identifier>EISSN: 1087-6545</identifier><identifier>DOI: 10.1080/08839510902879384</identifier><language>eng</language><publisher>Philadelphia: Taylor & Francis Group</publisher><subject>Accuracy ; Artificial intelligence ; Forecasting techniques ; Neural networks ; Regression analysis ; Time series</subject><ispartof>Applied artificial intelligence, 2009-05, Vol.23 (5), p.443-486</ispartof><rights>Copyright Taylor & Francis Group, LLC 2009</rights><rights>Copyright Taylor & Francis Ltd. 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-4b844496310c9fe2aeaac1cd3566975ddbdf41a21b656009637c64b9870375a23</citedby><cites>FETCH-LOGICAL-c447t-4b844496310c9fe2aeaac1cd3566975ddbdf41a21b656009637c64b9870375a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sallehuddin, Roselina</creatorcontrib><creatorcontrib>Hj. Shamsuddin, Siti Mariyam</creatorcontrib><title>HYBRID GREY RELATIONAL ARTIFICIAL NEURAL NETWORK AND AUTO REGRESSIVE INTEGRATED MOVING AVERAGE MODEL FOR FORECASTING TIME-SERIES DATA</title><title>Applied artificial intelligence</title><description>The aim of this study is to develop a new hybrid model by combining a linear and nonlinear model for forecasting time-series data. The proposed model (GRANN_ARIMA) integrates nonlinear grey relational artificial neural network (GRANN) and a linear autoregressive integrated moving average (ARIMA) model by combining new features and grey relational analysis to select the appropriate inputs and hybridization succession. To validate the performance of the proposed model, small and large scale data sets are used. The forecasting performance is compared with several models, and these include: individual models (ARIMA, multiple regression, GRANN), several hybrid models (MARMA, MR_ANN, ARIMA_ANN), and an artificial neural network (ANN) trained using a Levenberg Marquardt algorithm. The experiments have shown that the proposed model has outperformed other models with 99.5% forecasting accuracy for small-scale data and 99.84% for large-scale data. The obtained empirical results have proven that the GRANN_ARIMA model can provide a better alternative for time-series forecasting due to its promising performance and capability in handling time-series data for both small- and large-scale data.</description><subject>Accuracy</subject><subject>Artificial intelligence</subject><subject>Forecasting techniques</subject><subject>Neural networks</subject><subject>Regression analysis</subject><subject>Time series</subject><issn>0883-9514</issn><issn>1087-6545</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkc2O0zAURi0EEmXgAdhZLNiFsWMndiQ2pnE7FplEctyiWUVufqSO0mawU8E8wLw3LmXFCLGwrq--c64tXQDeY_QJI46uEeckSzDKUMxZRjh9ARYhYFGa0OQlWJzzKAD0NXjj_T1CCDOGF-Dp5u6LVjlca3kHtSyEUVUpCii0USu1VOFayo3-Xcy3Sn-Fosyh2Jgq0EGqa7WVUJUmNMLIHN5WW1WuodhKLdYytLks4KrS5yOXojbn1KhbGdVSK1nDXBjxFrwa7Oj7d3_qFdispFneREW1VktRRC2lbI7ojlNKs5Rg1GZDH9ve2ha3HUnSNGNJ1-26gWIb412apAgFkLUp3WWcIcISG5Mr8PEy98FN30-9n5vD3rf9ONpjP518QyhnOMlIAD_8Bd5PJ3cMf2tinPAUMcIDhC9Q6ybvXT80D25_sO6xwag5b6V5tpXgsIuzPw6TO9gfkxu7ZraP4-QGZ4_t3j-3mvnnHMzP_zXJvx_-BUVEmKE</recordid><startdate>20090504</startdate><enddate>20090504</enddate><creator>Sallehuddin, Roselina</creator><creator>Hj. Shamsuddin, Siti Mariyam</creator><general>Taylor & Francis Group</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090504</creationdate><title>HYBRID GREY RELATIONAL ARTIFICIAL NEURAL NETWORK AND AUTO REGRESSIVE INTEGRATED MOVING AVERAGE MODEL FOR FORECASTING TIME-SERIES DATA</title><author>Sallehuddin, Roselina ; Hj. Shamsuddin, Siti Mariyam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-4b844496310c9fe2aeaac1cd3566975ddbdf41a21b656009637c64b9870375a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Accuracy</topic><topic>Artificial intelligence</topic><topic>Forecasting techniques</topic><topic>Neural networks</topic><topic>Regression analysis</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sallehuddin, Roselina</creatorcontrib><creatorcontrib>Hj. Shamsuddin, Siti Mariyam</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Applied artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sallehuddin, Roselina</au><au>Hj. Shamsuddin, Siti Mariyam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HYBRID GREY RELATIONAL ARTIFICIAL NEURAL NETWORK AND AUTO REGRESSIVE INTEGRATED MOVING AVERAGE MODEL FOR FORECASTING TIME-SERIES DATA</atitle><jtitle>Applied artificial intelligence</jtitle><date>2009-05-04</date><risdate>2009</risdate><volume>23</volume><issue>5</issue><spage>443</spage><epage>486</epage><pages>443-486</pages><issn>0883-9514</issn><eissn>1087-6545</eissn><abstract>The aim of this study is to develop a new hybrid model by combining a linear and nonlinear model for forecasting time-series data. The proposed model (GRANN_ARIMA) integrates nonlinear grey relational artificial neural network (GRANN) and a linear autoregressive integrated moving average (ARIMA) model by combining new features and grey relational analysis to select the appropriate inputs and hybridization succession. To validate the performance of the proposed model, small and large scale data sets are used. The forecasting performance is compared with several models, and these include: individual models (ARIMA, multiple regression, GRANN), several hybrid models (MARMA, MR_ANN, ARIMA_ANN), and an artificial neural network (ANN) trained using a Levenberg Marquardt algorithm. The experiments have shown that the proposed model has outperformed other models with 99.5% forecasting accuracy for small-scale data and 99.84% for large-scale data. The obtained empirical results have proven that the GRANN_ARIMA model can provide a better alternative for time-series forecasting due to its promising performance and capability in handling time-series data for both small- and large-scale data.</abstract><cop>Philadelphia</cop><pub>Taylor & Francis Group</pub><doi>10.1080/08839510902879384</doi><tpages>44</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0883-9514 |
ispartof | Applied artificial intelligence, 2009-05, Vol.23 (5), p.443-486 |
issn | 0883-9514 1087-6545 |
language | eng |
recordid | cdi_crossref_primary_10_1080_08839510902879384 |
source | EBSCOhost Business Source Complete |
subjects | Accuracy Artificial intelligence Forecasting techniques Neural networks Regression analysis Time series |
title | HYBRID GREY RELATIONAL ARTIFICIAL NEURAL NETWORK AND AUTO REGRESSIVE INTEGRATED MOVING AVERAGE MODEL FOR FORECASTING TIME-SERIES DATA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A32%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HYBRID%20GREY%20RELATIONAL%20ARTIFICIAL%20NEURAL%20NETWORK%20AND%20AUTO%20REGRESSIVE%20INTEGRATED%20MOVING%20AVERAGE%20MODEL%20FOR%20FORECASTING%20TIME-SERIES%20DATA&rft.jtitle=Applied%20artificial%20intelligence&rft.au=Sallehuddin,%20Roselina&rft.date=2009-05-04&rft.volume=23&rft.issue=5&rft.spage=443&rft.epage=486&rft.pages=443-486&rft.issn=0883-9514&rft.eissn=1087-6545&rft_id=info:doi/10.1080/08839510902879384&rft_dat=%3Cproquest_cross%3E34871593%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215860738&rft_id=info:pmid/&rfr_iscdi=true |