Moment-based estimation of nonlinear regression models with boundary outcomes and endogeneity, with applications to nonnegative and fractional responses
In this article, we suggest simple moment-based estimators to deal with unobserved heterogeneity in a special class of nonlinear regression models that includes as main particular cases exponential models for nonnegative responses and logit and complementary loglog models for fractional responses. T...
Gespeichert in:
Veröffentlicht in: | Econometric reviews 2017-04, Vol.36 (4), p.397-420 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we suggest simple moment-based estimators to deal with unobserved heterogeneity in a special class of nonlinear regression models that includes as main particular cases exponential models for nonnegative responses and logit and complementary loglog models for fractional responses. The proposed estimators: (i) treat observed and omitted covariates in a similar manner; (ii) can deal with boundary outcomes; (iii) accommodate endogenous explanatory variables without requiring knowledge on the reduced form model, although such information may be easily incorporated in the estimation process; (iv) do not require distributional assumptions on the unobservables, a conditional mean assumption being enough for consistent estimation of the structural parameters; and (v) under the additional assumption that the dependence between observables and unobservables is restricted to the conditional mean, produce consistent estimators of partial effects conditional only on observables. |
---|---|
ISSN: | 0747-4938 1532-4168 |
DOI: | 10.1080/07474938.2014.976531 |