Optimal work-in-process inventory levels for high-variety, low-volume manufacturing systems

This article considers a manufacturing system that operates in a high-variety, low-volume environment, with significant setup times. The goal is to determine the optimal Work-In-Process (WIP) inventory levels for operating the system to meet the required demand for each product. The decision variabl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IIE transactions 2010-06, Vol.42 (6), p.379-391
Hauptverfasser: Srinivasan, Mandyam M., Viswanathan, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 391
container_issue 6
container_start_page 379
container_title IIE transactions
container_volume 42
creator Srinivasan, Mandyam M.
Viswanathan, S.
description This article considers a manufacturing system that operates in a high-variety, low-volume environment, with significant setup times. The goal is to determine the optimal Work-In-Process (WIP) inventory levels for operating the system to meet the required demand for each product. The decision variables are the number of pallets (containers) for each product and the number of units in each pallet (lot size). The objective is to minimize the total WIP inventory across all products. To capture congestion in the system, it is modeled as a closed queueing network with multiple product types. However, this leads to a complex non-linear integer program with a non-convex objective function. A lower bound on the objective function is developed that is used to develop upper and lower bounds on the number of pallets for each product. The bounds on the number of pallets allow the use of exhaustive enumeration within these bounds to obtain the optimal solution to this complex queueing network-based optimization problem. A simple heuristic is developed to further reduce the number of candidate configurations evaluated in the search for the optimal solution. A computational study reveals that the heuristic obtains the optimal solution in many of the test instances. [Supplementary materials are available for this article. Go to the publisher's online edition of IIE Transactions for supplemental resources containing details on some procedures and heuristics.]
doi_str_mv 10.1080/07408170902761406
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_07408170902761406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>901647347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-226d3f8442d5a75c667a2cbd018857047ce56df831baff31ea4e7db5cc75d7183</originalsourceid><addsrcrecordid>eNqFkcGKFDEQhoMoOI4-gLfGix6MVjrpJA1eZNFdYWEvCoKHkEknu1nTyZikZ-23N8N4cmGFQB3yfUXVXwi9JPCOgIT3IBhIImCEXnDCgD9CGzKwAUtJ4THaHP9xA74_Rc9KuQUAAURu0I-rffWzDt1dyj-xj3ifk7GldD4ebKwpr12wBxtK51Lubvz1DT7o7G1d33Yh3eFDCstsu1nHxWlTl-zjdVfWUu1cnqMnTodiX_ytW_Tt86evZxf48ur8y9nHS2yYJBX3PZ-ok4z106DFYDgXuje7qc0nBwFMGDvwyUlKdto5SqxmVky7wRgxTIJIukWvT33b7L8WW6qafTE2BB1tWooagXAmaHtb9OZBknBBKBUjhYa--ge9TUuObQ_Vk5HLfpRHiJwgk1Mp2Tq1zy3NvCoC6ngXde8uzflwcnxskc66BR8mVfUaUnZZR-OLog_p4r_6PUvV35X-AYrPpeI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219682980</pqid></control><display><type>article</type><title>Optimal work-in-process inventory levels for high-variety, low-volume manufacturing systems</title><source>EBSCOhost Business Source Complete</source><source>Taylor &amp; Francis:Master (3349 titles)</source><creator>Srinivasan, Mandyam M. ; Viswanathan, S.</creator><creatorcontrib>Srinivasan, Mandyam M. ; Viswanathan, S.</creatorcontrib><description>This article considers a manufacturing system that operates in a high-variety, low-volume environment, with significant setup times. The goal is to determine the optimal Work-In-Process (WIP) inventory levels for operating the system to meet the required demand for each product. The decision variables are the number of pallets (containers) for each product and the number of units in each pallet (lot size). The objective is to minimize the total WIP inventory across all products. To capture congestion in the system, it is modeled as a closed queueing network with multiple product types. However, this leads to a complex non-linear integer program with a non-convex objective function. A lower bound on the objective function is developed that is used to develop upper and lower bounds on the number of pallets for each product. The bounds on the number of pallets allow the use of exhaustive enumeration within these bounds to obtain the optimal solution to this complex queueing network-based optimization problem. A simple heuristic is developed to further reduce the number of candidate configurations evaluated in the search for the optimal solution. A computational study reveals that the heuristic obtains the optimal solution in many of the test instances. [Supplementary materials are available for this article. Go to the publisher's online edition of IIE Transactions for supplemental resources containing details on some procedures and heuristics.]</description><identifier>ISSN: 0740-817X</identifier><identifier>ISSN: 2472-5854</identifier><identifier>EISSN: 1545-8830</identifier><identifier>EISSN: 2472-5862</identifier><identifier>DOI: 10.1080/07408170902761406</identifier><identifier>CODEN: IIETDM</identifier><language>eng</language><publisher>Norcross: Taylor &amp; Francis Group</publisher><subject>closed queueing networks ; CONWIP ; Heuristic ; Integer programming ; Inventories ; Job shops ; Mathematical analysis ; Mathematical models ; multiple chains ; Networks ; non-linear integer program ; Nonlinear programming ; Optimization ; Pallets ; Queuing theory ; shop floor planning and control ; Stockpiling ; Studies ; Work in process</subject><ispartof>IIE transactions, 2010-06, Vol.42 (6), p.379-391</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2010</rights><rights>Copyright Taylor &amp; Francis Ltd. Jun 2010</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-226d3f8442d5a75c667a2cbd018857047ce56df831baff31ea4e7db5cc75d7183</citedby><cites>FETCH-LOGICAL-c481t-226d3f8442d5a75c667a2cbd018857047ce56df831baff31ea4e7db5cc75d7183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/07408170902761406$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/07408170902761406$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,60436</link.rule.ids></links><search><creatorcontrib>Srinivasan, Mandyam M.</creatorcontrib><creatorcontrib>Viswanathan, S.</creatorcontrib><title>Optimal work-in-process inventory levels for high-variety, low-volume manufacturing systems</title><title>IIE transactions</title><description>This article considers a manufacturing system that operates in a high-variety, low-volume environment, with significant setup times. The goal is to determine the optimal Work-In-Process (WIP) inventory levels for operating the system to meet the required demand for each product. The decision variables are the number of pallets (containers) for each product and the number of units in each pallet (lot size). The objective is to minimize the total WIP inventory across all products. To capture congestion in the system, it is modeled as a closed queueing network with multiple product types. However, this leads to a complex non-linear integer program with a non-convex objective function. A lower bound on the objective function is developed that is used to develop upper and lower bounds on the number of pallets for each product. The bounds on the number of pallets allow the use of exhaustive enumeration within these bounds to obtain the optimal solution to this complex queueing network-based optimization problem. A simple heuristic is developed to further reduce the number of candidate configurations evaluated in the search for the optimal solution. A computational study reveals that the heuristic obtains the optimal solution in many of the test instances. [Supplementary materials are available for this article. Go to the publisher's online edition of IIE Transactions for supplemental resources containing details on some procedures and heuristics.]</description><subject>closed queueing networks</subject><subject>CONWIP</subject><subject>Heuristic</subject><subject>Integer programming</subject><subject>Inventories</subject><subject>Job shops</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>multiple chains</subject><subject>Networks</subject><subject>non-linear integer program</subject><subject>Nonlinear programming</subject><subject>Optimization</subject><subject>Pallets</subject><subject>Queuing theory</subject><subject>shop floor planning and control</subject><subject>Stockpiling</subject><subject>Studies</subject><subject>Work in process</subject><issn>0740-817X</issn><issn>2472-5854</issn><issn>1545-8830</issn><issn>2472-5862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkcGKFDEQhoMoOI4-gLfGix6MVjrpJA1eZNFdYWEvCoKHkEknu1nTyZikZ-23N8N4cmGFQB3yfUXVXwi9JPCOgIT3IBhIImCEXnDCgD9CGzKwAUtJ4THaHP9xA74_Rc9KuQUAAURu0I-rffWzDt1dyj-xj3ifk7GldD4ebKwpr12wBxtK51Lubvz1DT7o7G1d33Yh3eFDCstsu1nHxWlTl-zjdVfWUu1cnqMnTodiX_ytW_Tt86evZxf48ur8y9nHS2yYJBX3PZ-ok4z106DFYDgXuje7qc0nBwFMGDvwyUlKdto5SqxmVky7wRgxTIJIukWvT33b7L8WW6qafTE2BB1tWooagXAmaHtb9OZBknBBKBUjhYa--ge9TUuObQ_Vk5HLfpRHiJwgk1Mp2Tq1zy3NvCoC6ngXde8uzflwcnxskc66BR8mVfUaUnZZR-OLog_p4r_6PUvV35X-AYrPpeI</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>Srinivasan, Mandyam M.</creator><creator>Viswanathan, S.</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>201006</creationdate><title>Optimal work-in-process inventory levels for high-variety, low-volume manufacturing systems</title><author>Srinivasan, Mandyam M. ; Viswanathan, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-226d3f8442d5a75c667a2cbd018857047ce56df831baff31ea4e7db5cc75d7183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>closed queueing networks</topic><topic>CONWIP</topic><topic>Heuristic</topic><topic>Integer programming</topic><topic>Inventories</topic><topic>Job shops</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>multiple chains</topic><topic>Networks</topic><topic>non-linear integer program</topic><topic>Nonlinear programming</topic><topic>Optimization</topic><topic>Pallets</topic><topic>Queuing theory</topic><topic>shop floor planning and control</topic><topic>Stockpiling</topic><topic>Studies</topic><topic>Work in process</topic><toplevel>online_resources</toplevel><creatorcontrib>Srinivasan, Mandyam M.</creatorcontrib><creatorcontrib>Viswanathan, S.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>IIE transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Srinivasan, Mandyam M.</au><au>Viswanathan, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal work-in-process inventory levels for high-variety, low-volume manufacturing systems</atitle><jtitle>IIE transactions</jtitle><date>2010-06</date><risdate>2010</risdate><volume>42</volume><issue>6</issue><spage>379</spage><epage>391</epage><pages>379-391</pages><issn>0740-817X</issn><issn>2472-5854</issn><eissn>1545-8830</eissn><eissn>2472-5862</eissn><coden>IIETDM</coden><abstract>This article considers a manufacturing system that operates in a high-variety, low-volume environment, with significant setup times. The goal is to determine the optimal Work-In-Process (WIP) inventory levels for operating the system to meet the required demand for each product. The decision variables are the number of pallets (containers) for each product and the number of units in each pallet (lot size). The objective is to minimize the total WIP inventory across all products. To capture congestion in the system, it is modeled as a closed queueing network with multiple product types. However, this leads to a complex non-linear integer program with a non-convex objective function. A lower bound on the objective function is developed that is used to develop upper and lower bounds on the number of pallets for each product. The bounds on the number of pallets allow the use of exhaustive enumeration within these bounds to obtain the optimal solution to this complex queueing network-based optimization problem. A simple heuristic is developed to further reduce the number of candidate configurations evaluated in the search for the optimal solution. A computational study reveals that the heuristic obtains the optimal solution in many of the test instances. [Supplementary materials are available for this article. Go to the publisher's online edition of IIE Transactions for supplemental resources containing details on some procedures and heuristics.]</abstract><cop>Norcross</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/07408170902761406</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0740-817X
ispartof IIE transactions, 2010-06, Vol.42 (6), p.379-391
issn 0740-817X
2472-5854
1545-8830
2472-5862
language eng
recordid cdi_crossref_primary_10_1080_07408170902761406
source EBSCOhost Business Source Complete; Taylor & Francis:Master (3349 titles)
subjects closed queueing networks
CONWIP
Heuristic
Integer programming
Inventories
Job shops
Mathematical analysis
Mathematical models
multiple chains
Networks
non-linear integer program
Nonlinear programming
Optimization
Pallets
Queuing theory
shop floor planning and control
Stockpiling
Studies
Work in process
title Optimal work-in-process inventory levels for high-variety, low-volume manufacturing systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A43%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20work-in-process%20inventory%20levels%20for%20high-variety,%20low-volume%20manufacturing%20systems&rft.jtitle=IIE%20transactions&rft.au=Srinivasan,%20Mandyam%20M.&rft.date=2010-06&rft.volume=42&rft.issue=6&rft.spage=379&rft.epage=391&rft.pages=379-391&rft.issn=0740-817X&rft.eissn=1545-8830&rft.coden=IIETDM&rft_id=info:doi/10.1080/07408170902761406&rft_dat=%3Cproquest_cross%3E901647347%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=219682980&rft_id=info:pmid/&rfr_iscdi=true