Optimal work-in-process inventory levels for high-variety, low-volume manufacturing systems
This article considers a manufacturing system that operates in a high-variety, low-volume environment, with significant setup times. The goal is to determine the optimal Work-In-Process (WIP) inventory levels for operating the system to meet the required demand for each product. The decision variabl...
Gespeichert in:
Veröffentlicht in: | IIE transactions 2010-06, Vol.42 (6), p.379-391 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 391 |
---|---|
container_issue | 6 |
container_start_page | 379 |
container_title | IIE transactions |
container_volume | 42 |
creator | Srinivasan, Mandyam M. Viswanathan, S. |
description | This article considers a manufacturing system that operates in a high-variety, low-volume environment, with significant setup times. The goal is to determine the optimal Work-In-Process (WIP) inventory levels for operating the system to meet the required demand for each product. The decision variables are the number of pallets (containers) for each product and the number of units in each pallet (lot size). The objective is to minimize the total WIP inventory across all products. To capture congestion in the system, it is modeled as a closed queueing network with multiple product types. However, this leads to a complex non-linear integer program with a non-convex objective function. A lower bound on the objective function is developed that is used to develop upper and lower bounds on the number of pallets for each product. The bounds on the number of pallets allow the use of exhaustive enumeration within these bounds to obtain the optimal solution to this complex queueing network-based optimization problem. A simple heuristic is developed to further reduce the number of candidate configurations evaluated in the search for the optimal solution. A computational study reveals that the heuristic obtains the optimal solution in many of the test instances.
[Supplementary materials are available for this article. Go to the publisher's online edition of IIE Transactions for supplemental resources containing details on some procedures and heuristics.] |
doi_str_mv | 10.1080/07408170902761406 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_07408170902761406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>901647347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-226d3f8442d5a75c667a2cbd018857047ce56df831baff31ea4e7db5cc75d7183</originalsourceid><addsrcrecordid>eNqFkcGKFDEQhoMoOI4-gLfGix6MVjrpJA1eZNFdYWEvCoKHkEknu1nTyZikZ-23N8N4cmGFQB3yfUXVXwi9JPCOgIT3IBhIImCEXnDCgD9CGzKwAUtJ4THaHP9xA74_Rc9KuQUAAURu0I-rffWzDt1dyj-xj3ifk7GldD4ebKwpr12wBxtK51Lubvz1DT7o7G1d33Yh3eFDCstsu1nHxWlTl-zjdVfWUu1cnqMnTodiX_ytW_Tt86evZxf48ur8y9nHS2yYJBX3PZ-ok4z106DFYDgXuje7qc0nBwFMGDvwyUlKdto5SqxmVky7wRgxTIJIukWvT33b7L8WW6qafTE2BB1tWooagXAmaHtb9OZBknBBKBUjhYa--ge9TUuObQ_Vk5HLfpRHiJwgk1Mp2Tq1zy3NvCoC6ngXde8uzflwcnxskc66BR8mVfUaUnZZR-OLog_p4r_6PUvV35X-AYrPpeI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219682980</pqid></control><display><type>article</type><title>Optimal work-in-process inventory levels for high-variety, low-volume manufacturing systems</title><source>EBSCOhost Business Source Complete</source><source>Taylor & Francis:Master (3349 titles)</source><creator>Srinivasan, Mandyam M. ; Viswanathan, S.</creator><creatorcontrib>Srinivasan, Mandyam M. ; Viswanathan, S.</creatorcontrib><description>This article considers a manufacturing system that operates in a high-variety, low-volume environment, with significant setup times. The goal is to determine the optimal Work-In-Process (WIP) inventory levels for operating the system to meet the required demand for each product. The decision variables are the number of pallets (containers) for each product and the number of units in each pallet (lot size). The objective is to minimize the total WIP inventory across all products. To capture congestion in the system, it is modeled as a closed queueing network with multiple product types. However, this leads to a complex non-linear integer program with a non-convex objective function. A lower bound on the objective function is developed that is used to develop upper and lower bounds on the number of pallets for each product. The bounds on the number of pallets allow the use of exhaustive enumeration within these bounds to obtain the optimal solution to this complex queueing network-based optimization problem. A simple heuristic is developed to further reduce the number of candidate configurations evaluated in the search for the optimal solution. A computational study reveals that the heuristic obtains the optimal solution in many of the test instances.
[Supplementary materials are available for this article. Go to the publisher's online edition of IIE Transactions for supplemental resources containing details on some procedures and heuristics.]</description><identifier>ISSN: 0740-817X</identifier><identifier>ISSN: 2472-5854</identifier><identifier>EISSN: 1545-8830</identifier><identifier>EISSN: 2472-5862</identifier><identifier>DOI: 10.1080/07408170902761406</identifier><identifier>CODEN: IIETDM</identifier><language>eng</language><publisher>Norcross: Taylor & Francis Group</publisher><subject>closed queueing networks ; CONWIP ; Heuristic ; Integer programming ; Inventories ; Job shops ; Mathematical analysis ; Mathematical models ; multiple chains ; Networks ; non-linear integer program ; Nonlinear programming ; Optimization ; Pallets ; Queuing theory ; shop floor planning and control ; Stockpiling ; Studies ; Work in process</subject><ispartof>IIE transactions, 2010-06, Vol.42 (6), p.379-391</ispartof><rights>Copyright Taylor & Francis Group, LLC 2010</rights><rights>Copyright Taylor & Francis Ltd. Jun 2010</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-226d3f8442d5a75c667a2cbd018857047ce56df831baff31ea4e7db5cc75d7183</citedby><cites>FETCH-LOGICAL-c481t-226d3f8442d5a75c667a2cbd018857047ce56df831baff31ea4e7db5cc75d7183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/07408170902761406$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/07408170902761406$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,60436</link.rule.ids></links><search><creatorcontrib>Srinivasan, Mandyam M.</creatorcontrib><creatorcontrib>Viswanathan, S.</creatorcontrib><title>Optimal work-in-process inventory levels for high-variety, low-volume manufacturing systems</title><title>IIE transactions</title><description>This article considers a manufacturing system that operates in a high-variety, low-volume environment, with significant setup times. The goal is to determine the optimal Work-In-Process (WIP) inventory levels for operating the system to meet the required demand for each product. The decision variables are the number of pallets (containers) for each product and the number of units in each pallet (lot size). The objective is to minimize the total WIP inventory across all products. To capture congestion in the system, it is modeled as a closed queueing network with multiple product types. However, this leads to a complex non-linear integer program with a non-convex objective function. A lower bound on the objective function is developed that is used to develop upper and lower bounds on the number of pallets for each product. The bounds on the number of pallets allow the use of exhaustive enumeration within these bounds to obtain the optimal solution to this complex queueing network-based optimization problem. A simple heuristic is developed to further reduce the number of candidate configurations evaluated in the search for the optimal solution. A computational study reveals that the heuristic obtains the optimal solution in many of the test instances.
[Supplementary materials are available for this article. Go to the publisher's online edition of IIE Transactions for supplemental resources containing details on some procedures and heuristics.]</description><subject>closed queueing networks</subject><subject>CONWIP</subject><subject>Heuristic</subject><subject>Integer programming</subject><subject>Inventories</subject><subject>Job shops</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>multiple chains</subject><subject>Networks</subject><subject>non-linear integer program</subject><subject>Nonlinear programming</subject><subject>Optimization</subject><subject>Pallets</subject><subject>Queuing theory</subject><subject>shop floor planning and control</subject><subject>Stockpiling</subject><subject>Studies</subject><subject>Work in process</subject><issn>0740-817X</issn><issn>2472-5854</issn><issn>1545-8830</issn><issn>2472-5862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkcGKFDEQhoMoOI4-gLfGix6MVjrpJA1eZNFdYWEvCoKHkEknu1nTyZikZ-23N8N4cmGFQB3yfUXVXwi9JPCOgIT3IBhIImCEXnDCgD9CGzKwAUtJ4THaHP9xA74_Rc9KuQUAAURu0I-rffWzDt1dyj-xj3ifk7GldD4ebKwpr12wBxtK51Lubvz1DT7o7G1d33Yh3eFDCstsu1nHxWlTl-zjdVfWUu1cnqMnTodiX_ytW_Tt86evZxf48ur8y9nHS2yYJBX3PZ-ok4z106DFYDgXuje7qc0nBwFMGDvwyUlKdto5SqxmVky7wRgxTIJIukWvT33b7L8WW6qafTE2BB1tWooagXAmaHtb9OZBknBBKBUjhYa--ge9TUuObQ_Vk5HLfpRHiJwgk1Mp2Tq1zy3NvCoC6ngXde8uzflwcnxskc66BR8mVfUaUnZZR-OLog_p4r_6PUvV35X-AYrPpeI</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>Srinivasan, Mandyam M.</creator><creator>Viswanathan, S.</creator><general>Taylor & Francis Group</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>201006</creationdate><title>Optimal work-in-process inventory levels for high-variety, low-volume manufacturing systems</title><author>Srinivasan, Mandyam M. ; Viswanathan, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-226d3f8442d5a75c667a2cbd018857047ce56df831baff31ea4e7db5cc75d7183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>closed queueing networks</topic><topic>CONWIP</topic><topic>Heuristic</topic><topic>Integer programming</topic><topic>Inventories</topic><topic>Job shops</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>multiple chains</topic><topic>Networks</topic><topic>non-linear integer program</topic><topic>Nonlinear programming</topic><topic>Optimization</topic><topic>Pallets</topic><topic>Queuing theory</topic><topic>shop floor planning and control</topic><topic>Stockpiling</topic><topic>Studies</topic><topic>Work in process</topic><toplevel>online_resources</toplevel><creatorcontrib>Srinivasan, Mandyam M.</creatorcontrib><creatorcontrib>Viswanathan, S.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>IIE transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Srinivasan, Mandyam M.</au><au>Viswanathan, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal work-in-process inventory levels for high-variety, low-volume manufacturing systems</atitle><jtitle>IIE transactions</jtitle><date>2010-06</date><risdate>2010</risdate><volume>42</volume><issue>6</issue><spage>379</spage><epage>391</epage><pages>379-391</pages><issn>0740-817X</issn><issn>2472-5854</issn><eissn>1545-8830</eissn><eissn>2472-5862</eissn><coden>IIETDM</coden><abstract>This article considers a manufacturing system that operates in a high-variety, low-volume environment, with significant setup times. The goal is to determine the optimal Work-In-Process (WIP) inventory levels for operating the system to meet the required demand for each product. The decision variables are the number of pallets (containers) for each product and the number of units in each pallet (lot size). The objective is to minimize the total WIP inventory across all products. To capture congestion in the system, it is modeled as a closed queueing network with multiple product types. However, this leads to a complex non-linear integer program with a non-convex objective function. A lower bound on the objective function is developed that is used to develop upper and lower bounds on the number of pallets for each product. The bounds on the number of pallets allow the use of exhaustive enumeration within these bounds to obtain the optimal solution to this complex queueing network-based optimization problem. A simple heuristic is developed to further reduce the number of candidate configurations evaluated in the search for the optimal solution. A computational study reveals that the heuristic obtains the optimal solution in many of the test instances.
[Supplementary materials are available for this article. Go to the publisher's online edition of IIE Transactions for supplemental resources containing details on some procedures and heuristics.]</abstract><cop>Norcross</cop><pub>Taylor & Francis Group</pub><doi>10.1080/07408170902761406</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-817X |
ispartof | IIE transactions, 2010-06, Vol.42 (6), p.379-391 |
issn | 0740-817X 2472-5854 1545-8830 2472-5862 |
language | eng |
recordid | cdi_crossref_primary_10_1080_07408170902761406 |
source | EBSCOhost Business Source Complete; Taylor & Francis:Master (3349 titles) |
subjects | closed queueing networks CONWIP Heuristic Integer programming Inventories Job shops Mathematical analysis Mathematical models multiple chains Networks non-linear integer program Nonlinear programming Optimization Pallets Queuing theory shop floor planning and control Stockpiling Studies Work in process |
title | Optimal work-in-process inventory levels for high-variety, low-volume manufacturing systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A43%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20work-in-process%20inventory%20levels%20for%20high-variety,%20low-volume%20manufacturing%20systems&rft.jtitle=IIE%20transactions&rft.au=Srinivasan,%20Mandyam%20M.&rft.date=2010-06&rft.volume=42&rft.issue=6&rft.spage=379&rft.epage=391&rft.pages=379-391&rft.issn=0740-817X&rft.eissn=1545-8830&rft.coden=IIETDM&rft_id=info:doi/10.1080/07408170902761406&rft_dat=%3Cproquest_cross%3E901647347%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=219682980&rft_id=info:pmid/&rfr_iscdi=true |