Predicting the Global Minimum Variance Portfolio

We propose a novel dynamic approach to forecast the weights of the global minimum variance portfolio (GMVP) for the conditional covariance matrix of asset returns. The GMVP weights are the population coefficients of a linear regression of a benchmark return on a vector of return differences. This re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of business & economic statistics 2023-04, Vol.41 (2), p.440-452
Hauptverfasser: Reh, Laura, Krüger, Fabian, Liesenfeld, Roman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 452
container_issue 2
container_start_page 440
container_title Journal of business & economic statistics
container_volume 41
creator Reh, Laura
Krüger, Fabian
Liesenfeld, Roman
description We propose a novel dynamic approach to forecast the weights of the global minimum variance portfolio (GMVP) for the conditional covariance matrix of asset returns. The GMVP weights are the population coefficients of a linear regression of a benchmark return on a vector of return differences. This representation enables us to derive a consistent loss function from which we can infer the GMVP weights without imposing any distributional assumptions on the returns. In order to capture time variation in the returns' conditional covariance structure, we model the portfolio weights through a recursive least squares (RLS) scheme as well as by generalized autoregressive score (GAS) type dynamics. Sparse parameterizations and targeting toward the weights of the equally weighted portfolio ensure scalability with respect to the number of assets. We apply these models to daily stock returns, and find that they perform well compared to existing static and dynamic approaches in terms of both the expected loss and unconditional portfolio variance.
doi_str_mv 10.1080/07350015.2022.2035226
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_07350015_2022_2035226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2803112259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-4d4faf4fe394b165245c7cba70eb251a2482bda999326e418dbceb8f195c6f373</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-BKHguWs-m_SmLLoKintQryFJE83SNmvSRfbfm9IVb87AzOV5Z-AB4BLBBYICXkNOGISILTDEOA_CMK6OwAwxwkvMIT8Gs5EpR-gUnKW0gbkEq2YArqNtvBl8_1EMn7ZYtUGrtnj2ve92XfGuole9scU6xMGF1odzcOJUm-zFYc_B2_3d6_KhfHpZPS5vn0pDORtK2lCnHHWW1FSjimHKDDdacWg1ZkhhKrBuVF3XBFeWItFoY7VwqGamcoSTObia7m5j-NrZNMhN2MU-v5RYQIIQxqzOFJsoE0NK0Tq5jb5TcS8RlKMc-StHjnLkQU7OFVPOmtD79JcSnNdV7vH0zYT43oXYqe8Q20YOat-G6GKWkmPk_y8_DEp0Hg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2803112259</pqid></control><display><type>article</type><title>Predicting the Global Minimum Variance Portfolio</title><source>EBSCOhost Business Source Complete</source><creator>Reh, Laura ; Krüger, Fabian ; Liesenfeld, Roman</creator><creatorcontrib>Reh, Laura ; Krüger, Fabian ; Liesenfeld, Roman</creatorcontrib><description>We propose a novel dynamic approach to forecast the weights of the global minimum variance portfolio (GMVP) for the conditional covariance matrix of asset returns. The GMVP weights are the population coefficients of a linear regression of a benchmark return on a vector of return differences. This representation enables us to derive a consistent loss function from which we can infer the GMVP weights without imposing any distributional assumptions on the returns. In order to capture time variation in the returns' conditional covariance structure, we model the portfolio weights through a recursive least squares (RLS) scheme as well as by generalized autoregressive score (GAS) type dynamics. Sparse parameterizations and targeting toward the weights of the equally weighted portfolio ensure scalability with respect to the number of assets. We apply these models to daily stock returns, and find that they perform well compared to existing static and dynamic approaches in terms of both the expected loss and unconditional portfolio variance.</description><identifier>ISSN: 0735-0015</identifier><identifier>EISSN: 1537-2707</identifier><identifier>DOI: 10.1080/07350015.2022.2035226</identifier><language>eng</language><publisher>Alexandria: Taylor &amp; Francis</publisher><subject>Consistent loss function ; Elicitability ; Forecasting ; Generalized autoregressive score ; Recursive least squares ; Shrinkage</subject><ispartof>Journal of business &amp; economic statistics, 2023-04, Vol.41 (2), p.440-452</ispartof><rights>2022 American Statistical Association 2022</rights><rights>2022 American Statistical Association</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-4d4faf4fe394b165245c7cba70eb251a2482bda999326e418dbceb8f195c6f373</citedby><cites>FETCH-LOGICAL-c475t-4d4faf4fe394b165245c7cba70eb251a2482bda999326e418dbceb8f195c6f373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Reh, Laura</creatorcontrib><creatorcontrib>Krüger, Fabian</creatorcontrib><creatorcontrib>Liesenfeld, Roman</creatorcontrib><title>Predicting the Global Minimum Variance Portfolio</title><title>Journal of business &amp; economic statistics</title><description>We propose a novel dynamic approach to forecast the weights of the global minimum variance portfolio (GMVP) for the conditional covariance matrix of asset returns. The GMVP weights are the population coefficients of a linear regression of a benchmark return on a vector of return differences. This representation enables us to derive a consistent loss function from which we can infer the GMVP weights without imposing any distributional assumptions on the returns. In order to capture time variation in the returns' conditional covariance structure, we model the portfolio weights through a recursive least squares (RLS) scheme as well as by generalized autoregressive score (GAS) type dynamics. Sparse parameterizations and targeting toward the weights of the equally weighted portfolio ensure scalability with respect to the number of assets. We apply these models to daily stock returns, and find that they perform well compared to existing static and dynamic approaches in terms of both the expected loss and unconditional portfolio variance.</description><subject>Consistent loss function</subject><subject>Elicitability</subject><subject>Forecasting</subject><subject>Generalized autoregressive score</subject><subject>Recursive least squares</subject><subject>Shrinkage</subject><issn>0735-0015</issn><issn>1537-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-BKHguWs-m_SmLLoKintQryFJE83SNmvSRfbfm9IVb87AzOV5Z-AB4BLBBYICXkNOGISILTDEOA_CMK6OwAwxwkvMIT8Gs5EpR-gUnKW0gbkEq2YArqNtvBl8_1EMn7ZYtUGrtnj2ve92XfGuole9scU6xMGF1odzcOJUm-zFYc_B2_3d6_KhfHpZPS5vn0pDORtK2lCnHHWW1FSjimHKDDdacWg1ZkhhKrBuVF3XBFeWItFoY7VwqGamcoSTObia7m5j-NrZNMhN2MU-v5RYQIIQxqzOFJsoE0NK0Tq5jb5TcS8RlKMc-StHjnLkQU7OFVPOmtD79JcSnNdV7vH0zYT43oXYqe8Q20YOat-G6GKWkmPk_y8_DEp0Hg</recordid><startdate>20230403</startdate><enddate>20230403</enddate><creator>Reh, Laura</creator><creator>Krüger, Fabian</creator><creator>Liesenfeld, Roman</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230403</creationdate><title>Predicting the Global Minimum Variance Portfolio</title><author>Reh, Laura ; Krüger, Fabian ; Liesenfeld, Roman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-4d4faf4fe394b165245c7cba70eb251a2482bda999326e418dbceb8f195c6f373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Consistent loss function</topic><topic>Elicitability</topic><topic>Forecasting</topic><topic>Generalized autoregressive score</topic><topic>Recursive least squares</topic><topic>Shrinkage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reh, Laura</creatorcontrib><creatorcontrib>Krüger, Fabian</creatorcontrib><creatorcontrib>Liesenfeld, Roman</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><jtitle>Journal of business &amp; economic statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reh, Laura</au><au>Krüger, Fabian</au><au>Liesenfeld, Roman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting the Global Minimum Variance Portfolio</atitle><jtitle>Journal of business &amp; economic statistics</jtitle><date>2023-04-03</date><risdate>2023</risdate><volume>41</volume><issue>2</issue><spage>440</spage><epage>452</epage><pages>440-452</pages><issn>0735-0015</issn><eissn>1537-2707</eissn><abstract>We propose a novel dynamic approach to forecast the weights of the global minimum variance portfolio (GMVP) for the conditional covariance matrix of asset returns. The GMVP weights are the population coefficients of a linear regression of a benchmark return on a vector of return differences. This representation enables us to derive a consistent loss function from which we can infer the GMVP weights without imposing any distributional assumptions on the returns. In order to capture time variation in the returns' conditional covariance structure, we model the portfolio weights through a recursive least squares (RLS) scheme as well as by generalized autoregressive score (GAS) type dynamics. Sparse parameterizations and targeting toward the weights of the equally weighted portfolio ensure scalability with respect to the number of assets. We apply these models to daily stock returns, and find that they perform well compared to existing static and dynamic approaches in terms of both the expected loss and unconditional portfolio variance.</abstract><cop>Alexandria</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/07350015.2022.2035226</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0735-0015
ispartof Journal of business & economic statistics, 2023-04, Vol.41 (2), p.440-452
issn 0735-0015
1537-2707
language eng
recordid cdi_crossref_primary_10_1080_07350015_2022_2035226
source EBSCOhost Business Source Complete
subjects Consistent loss function
Elicitability
Forecasting
Generalized autoregressive score
Recursive least squares
Shrinkage
title Predicting the Global Minimum Variance Portfolio
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A46%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20the%20Global%20Minimum%20Variance%20Portfolio&rft.jtitle=Journal%20of%20business%20&%20economic%20statistics&rft.au=Reh,%20Laura&rft.date=2023-04-03&rft.volume=41&rft.issue=2&rft.spage=440&rft.epage=452&rft.pages=440-452&rft.issn=0735-0015&rft.eissn=1537-2707&rft_id=info:doi/10.1080/07350015.2022.2035226&rft_dat=%3Cproquest_cross%3E2803112259%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2803112259&rft_id=info:pmid/&rfr_iscdi=true