Effect of regression to the mean in multivariate distributions

Estimating treatment effects in the presence of regression to the mean is a problem arising in truncated distributions that is being recognized with increasing interest in recent literature. As noted in a previous communication by the authors (1991), any extraneous source of variability such as with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in statistics. Theory and methods 1992-01, Vol.21 (2), p.333-350
Hauptverfasser: George, Varghese T., Johnson, William D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 350
container_issue 2
container_start_page 333
container_title Communications in statistics. Theory and methods
container_volume 21
creator George, Varghese T.
Johnson, William D.
description Estimating treatment effects in the presence of regression to the mean is a problem arising in truncated distributions that is being recognized with increasing interest in recent literature. As noted in a previous communication by the authors (1991), any extraneous source of variability such as within-subject variability and measurement errors can contribute to the magnitude of regression toward the mean. The main focus of this paper is consideration of a model for estimating treatment effects when truncation and regression to the mean occur on more than one random variable. This situation occurs often in investigations where subjects are selected for study because measurements on two characteristics of interest both exceed specified values.
doi_str_mv 10.1080/03610929208830782
format Article
fullrecord <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_03610929208830782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4416361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-fd7df3c1236811b90985bac283ccdb0f225a1c5185292af6d5367b72002e939b3</originalsourceid><addsrcrecordid>eNp1kMFKxDAQhoMouK4-gLccvFZnkqZNQQRZdlVY8KLgraRpopG2WZKssm9vl6oX8TSH-b5_mJ-Qc4RLBAlXwAuEilUMpORQSnZAZig4y3IUL4dktt9nI1Ack5MY3wFQlJLPyM3SWqMT9ZYG8xpMjM4PNHma3gztjRqoG2i_7ZL7UMGpZGjrYgqu2aYRjKfkyKoumrPvOSfPq-XT4j5bP949LG7XmeZMpMy2ZWu5RsYLidhUUEnRKM0k17ptwDImFGqBUowfKFu0ghdlUzIAZipeNXxOcMrVwccYjK03wfUq7GqEel9A_aeA0bmYnI2KWnU2qEG7-CvmORajM2LXE-YG60OvPn3o2jqpXefDj8P_v_IFJfZs2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effect of regression to the mean in multivariate distributions</title><source>Taylor &amp; Francis:Master (3349 titles)</source><creator>George, Varghese T. ; Johnson, William D.</creator><creatorcontrib>George, Varghese T. ; Johnson, William D.</creatorcontrib><description>Estimating treatment effects in the presence of regression to the mean is a problem arising in truncated distributions that is being recognized with increasing interest in recent literature. As noted in a previous communication by the authors (1991), any extraneous source of variability such as within-subject variability and measurement errors can contribute to the magnitude of regression toward the mean. The main focus of this paper is consideration of a model for estimating treatment effects when truncation and regression to the mean occur on more than one random variable. This situation occurs often in investigations where subjects are selected for study because measurements on two characteristics of interest both exceed specified values.</description><identifier>ISSN: 0361-0926</identifier><identifier>EISSN: 1532-415X</identifier><identifier>DOI: 10.1080/03610929208830782</identifier><identifier>CODEN: CSTMDC</identifier><language>eng</language><publisher>Philadelphia, PA: Marcel Dekker, Inc</publisher><subject>Bivariate normal distribution ; Exact sciences and technology ; Mathematics ; measurement error ; Multivariate analysis ; Probability and statistics ; regression to the mean ; repeated measurements ; replicate measurements ; Sciences and techniques of general use ; Statistics ; truncation ; within-subject effect</subject><ispartof>Communications in statistics. Theory and methods, 1992-01, Vol.21 (2), p.333-350</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1992</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-fd7df3c1236811b90985bac283ccdb0f225a1c5185292af6d5367b72002e939b3</citedby><cites>FETCH-LOGICAL-c325t-fd7df3c1236811b90985bac283ccdb0f225a1c5185292af6d5367b72002e939b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/03610929208830782$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/03610929208830782$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,4022,27921,27922,27923,59645,60434</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4416361$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>George, Varghese T.</creatorcontrib><creatorcontrib>Johnson, William D.</creatorcontrib><title>Effect of regression to the mean in multivariate distributions</title><title>Communications in statistics. Theory and methods</title><description>Estimating treatment effects in the presence of regression to the mean is a problem arising in truncated distributions that is being recognized with increasing interest in recent literature. As noted in a previous communication by the authors (1991), any extraneous source of variability such as within-subject variability and measurement errors can contribute to the magnitude of regression toward the mean. The main focus of this paper is consideration of a model for estimating treatment effects when truncation and regression to the mean occur on more than one random variable. This situation occurs often in investigations where subjects are selected for study because measurements on two characteristics of interest both exceed specified values.</description><subject>Bivariate normal distribution</subject><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>measurement error</subject><subject>Multivariate analysis</subject><subject>Probability and statistics</subject><subject>regression to the mean</subject><subject>repeated measurements</subject><subject>replicate measurements</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>truncation</subject><subject>within-subject effect</subject><issn>0361-0926</issn><issn>1532-415X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKxDAQhoMouK4-gLccvFZnkqZNQQRZdlVY8KLgraRpopG2WZKssm9vl6oX8TSH-b5_mJ-Qc4RLBAlXwAuEilUMpORQSnZAZig4y3IUL4dktt9nI1Ack5MY3wFQlJLPyM3SWqMT9ZYG8xpMjM4PNHma3gztjRqoG2i_7ZL7UMGpZGjrYgqu2aYRjKfkyKoumrPvOSfPq-XT4j5bP949LG7XmeZMpMy2ZWu5RsYLidhUUEnRKM0k17ptwDImFGqBUowfKFu0ghdlUzIAZipeNXxOcMrVwccYjK03wfUq7GqEel9A_aeA0bmYnI2KWnU2qEG7-CvmORajM2LXE-YG60OvPn3o2jqpXefDj8P_v_IFJfZs2A</recordid><startdate>19920101</startdate><enddate>19920101</enddate><creator>George, Varghese T.</creator><creator>Johnson, William D.</creator><general>Marcel Dekker, Inc</general><general>Taylor &amp; Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19920101</creationdate><title>Effect of regression to the mean in multivariate distributions</title><author>George, Varghese T. ; Johnson, William D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-fd7df3c1236811b90985bac283ccdb0f225a1c5185292af6d5367b72002e939b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Bivariate normal distribution</topic><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>measurement error</topic><topic>Multivariate analysis</topic><topic>Probability and statistics</topic><topic>regression to the mean</topic><topic>repeated measurements</topic><topic>replicate measurements</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>truncation</topic><topic>within-subject effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>George, Varghese T.</creatorcontrib><creatorcontrib>Johnson, William D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Communications in statistics. Theory and methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>George, Varghese T.</au><au>Johnson, William D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of regression to the mean in multivariate distributions</atitle><jtitle>Communications in statistics. Theory and methods</jtitle><date>1992-01-01</date><risdate>1992</risdate><volume>21</volume><issue>2</issue><spage>333</spage><epage>350</epage><pages>333-350</pages><issn>0361-0926</issn><eissn>1532-415X</eissn><coden>CSTMDC</coden><abstract>Estimating treatment effects in the presence of regression to the mean is a problem arising in truncated distributions that is being recognized with increasing interest in recent literature. As noted in a previous communication by the authors (1991), any extraneous source of variability such as within-subject variability and measurement errors can contribute to the magnitude of regression toward the mean. The main focus of this paper is consideration of a model for estimating treatment effects when truncation and regression to the mean occur on more than one random variable. This situation occurs often in investigations where subjects are selected for study because measurements on two characteristics of interest both exceed specified values.</abstract><cop>Philadelphia, PA</cop><pub>Marcel Dekker, Inc</pub><doi>10.1080/03610929208830782</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-0926
ispartof Communications in statistics. Theory and methods, 1992-01, Vol.21 (2), p.333-350
issn 0361-0926
1532-415X
language eng
recordid cdi_crossref_primary_10_1080_03610929208830782
source Taylor & Francis:Master (3349 titles)
subjects Bivariate normal distribution
Exact sciences and technology
Mathematics
measurement error
Multivariate analysis
Probability and statistics
regression to the mean
repeated measurements
replicate measurements
Sciences and techniques of general use
Statistics
truncation
within-subject effect
title Effect of regression to the mean in multivariate distributions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A12%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20regression%20to%20the%20mean%20in%20multivariate%20distributions&rft.jtitle=Communications%20in%20statistics.%20Theory%20and%20methods&rft.au=George,%20Varghese%20T.&rft.date=1992-01-01&rft.volume=21&rft.issue=2&rft.spage=333&rft.epage=350&rft.pages=333-350&rft.issn=0361-0926&rft.eissn=1532-415X&rft.coden=CSTMDC&rft_id=info:doi/10.1080/03610929208830782&rft_dat=%3Cpascalfrancis_cross%3E4416361%3C/pascalfrancis_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true