One-Dimensional Pressureless Gas Systems with/without Viscosity

A general global existence result for one-dimensional pressureless Euler/Euler-Poisson systems with or without viscosity is obtained by employing the "sticky particles" model. We first construct entropy solutions for some appropriate scalar conservation laws, then we show that these soluti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in partial differential equations 2015-09, Vol.40 (9), p.1619-1665
Hauptverfasser: Nguyen, Truyen, Tudorascu, Adrian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1665
container_issue 9
container_start_page 1619
container_title Communications in partial differential equations
container_volume 40
creator Nguyen, Truyen
Tudorascu, Adrian
description A general global existence result for one-dimensional pressureless Euler/Euler-Poisson systems with or without viscosity is obtained by employing the "sticky particles" model. We first construct entropy solutions for some appropriate scalar conservation laws, then we show that these solutions encode all the information necessary to obtain solutions for the pressureless systems. Another novel contribution is the stability and uniqueness of solutions, which is obtained via a contraction principle in the Wasserstein metric.
doi_str_mv 10.1080/03605302.2015.1030955
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_03605302_2015_1030955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709758461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-51b6a8e188e8694a2efac52e8357879fe5e7eac98ca52ffe28e360b840b602a13</originalsourceid><addsrcrecordid>eNp9kM1Lw0AQxRdRsFb_BCHgxUva_Uw2J5WqVShU8OO6bOMspiTZupNQ-t-7ofXiwcs8GH7vMfMIuWR0wqimUyoyqgTlE06ZiitBC6WOyIgpwVPJhDgmo4FJB-iUnCGuKWWaF3JEbpYtpPdVAy1WvrV18hIAsQ9QR0nmFpPXHXbQYLKtuq_pMHzfJR8Vlh6rbndOTpytES4OOibvjw9vs6d0sZw_z-4WaSly1qWKrTKrgWkNOiuk5eBsqThooXKdFw4U5GDLQpdWceeAa4gHr7Skq4xyy8SYXO9zN8F_94CdaeIJUNe2Bd-jYTktcqVlNqBXf9C170P8LVJZQaVgVMpIqT1VBo8YwJlNqBobdoZRM9Rqfms1Q63mUGv03e59Vet8aOzWh_rTdHZX--CCbcsKjfg_4gcbXn3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1690431044</pqid></control><display><type>article</type><title>One-Dimensional Pressureless Gas Systems with/without Viscosity</title><source>Taylor &amp; Francis Journals Complete</source><creator>Nguyen, Truyen ; Tudorascu, Adrian</creator><creatorcontrib>Nguyen, Truyen ; Tudorascu, Adrian</creatorcontrib><description>A general global existence result for one-dimensional pressureless Euler/Euler-Poisson systems with or without viscosity is obtained by employing the "sticky particles" model. We first construct entropy solutions for some appropriate scalar conservation laws, then we show that these solutions encode all the information necessary to obtain solutions for the pressureless systems. Another novel contribution is the stability and uniqueness of solutions, which is obtained via a contraction principle in the Wasserstein metric.</description><identifier>ISSN: 0360-5302</identifier><identifier>EISSN: 1532-4133</identifier><identifier>DOI: 10.1080/03605302.2015.1030955</identifier><language>eng</language><publisher>Philadelphia: Taylor &amp; Francis Group</publisher><subject>Conservation laws ; Construction ; Entropy ; Mathematical models ; Partial differential equations ; Pressureless Euler/Euler-poisson ; Pressureless gas system ; Scalars ; Stability ; Uniqueness ; Viscosity ; Wasserstein metric</subject><ispartof>Communications in partial differential equations, 2015-09, Vol.40 (9), p.1619-1665</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2015</rights><rights>Copyright Taylor &amp; Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-51b6a8e188e8694a2efac52e8357879fe5e7eac98ca52ffe28e360b840b602a13</citedby><cites>FETCH-LOGICAL-c371t-51b6a8e188e8694a2efac52e8357879fe5e7eac98ca52ffe28e360b840b602a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/03605302.2015.1030955$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/03605302.2015.1030955$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,59645,60434</link.rule.ids></links><search><creatorcontrib>Nguyen, Truyen</creatorcontrib><creatorcontrib>Tudorascu, Adrian</creatorcontrib><title>One-Dimensional Pressureless Gas Systems with/without Viscosity</title><title>Communications in partial differential equations</title><description>A general global existence result for one-dimensional pressureless Euler/Euler-Poisson systems with or without viscosity is obtained by employing the "sticky particles" model. We first construct entropy solutions for some appropriate scalar conservation laws, then we show that these solutions encode all the information necessary to obtain solutions for the pressureless systems. Another novel contribution is the stability and uniqueness of solutions, which is obtained via a contraction principle in the Wasserstein metric.</description><subject>Conservation laws</subject><subject>Construction</subject><subject>Entropy</subject><subject>Mathematical models</subject><subject>Partial differential equations</subject><subject>Pressureless Euler/Euler-poisson</subject><subject>Pressureless gas system</subject><subject>Scalars</subject><subject>Stability</subject><subject>Uniqueness</subject><subject>Viscosity</subject><subject>Wasserstein metric</subject><issn>0360-5302</issn><issn>1532-4133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Lw0AQxRdRsFb_BCHgxUva_Uw2J5WqVShU8OO6bOMspiTZupNQ-t-7ofXiwcs8GH7vMfMIuWR0wqimUyoyqgTlE06ZiitBC6WOyIgpwVPJhDgmo4FJB-iUnCGuKWWaF3JEbpYtpPdVAy1WvrV18hIAsQ9QR0nmFpPXHXbQYLKtuq_pMHzfJR8Vlh6rbndOTpytES4OOibvjw9vs6d0sZw_z-4WaSly1qWKrTKrgWkNOiuk5eBsqThooXKdFw4U5GDLQpdWceeAa4gHr7Skq4xyy8SYXO9zN8F_94CdaeIJUNe2Bd-jYTktcqVlNqBXf9C170P8LVJZQaVgVMpIqT1VBo8YwJlNqBobdoZRM9Rqfms1Q63mUGv03e59Vet8aOzWh_rTdHZX--CCbcsKjfg_4gcbXn3A</recordid><startdate>20150902</startdate><enddate>20150902</enddate><creator>Nguyen, Truyen</creator><creator>Tudorascu, Adrian</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150902</creationdate><title>One-Dimensional Pressureless Gas Systems with/without Viscosity</title><author>Nguyen, Truyen ; Tudorascu, Adrian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-51b6a8e188e8694a2efac52e8357879fe5e7eac98ca52ffe28e360b840b602a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Conservation laws</topic><topic>Construction</topic><topic>Entropy</topic><topic>Mathematical models</topic><topic>Partial differential equations</topic><topic>Pressureless Euler/Euler-poisson</topic><topic>Pressureless gas system</topic><topic>Scalars</topic><topic>Stability</topic><topic>Uniqueness</topic><topic>Viscosity</topic><topic>Wasserstein metric</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Truyen</creatorcontrib><creatorcontrib>Tudorascu, Adrian</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Truyen</au><au>Tudorascu, Adrian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-Dimensional Pressureless Gas Systems with/without Viscosity</atitle><jtitle>Communications in partial differential equations</jtitle><date>2015-09-02</date><risdate>2015</risdate><volume>40</volume><issue>9</issue><spage>1619</spage><epage>1665</epage><pages>1619-1665</pages><issn>0360-5302</issn><eissn>1532-4133</eissn><abstract>A general global existence result for one-dimensional pressureless Euler/Euler-Poisson systems with or without viscosity is obtained by employing the "sticky particles" model. We first construct entropy solutions for some appropriate scalar conservation laws, then we show that these solutions encode all the information necessary to obtain solutions for the pressureless systems. Another novel contribution is the stability and uniqueness of solutions, which is obtained via a contraction principle in the Wasserstein metric.</abstract><cop>Philadelphia</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/03605302.2015.1030955</doi><tpages>47</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-5302
ispartof Communications in partial differential equations, 2015-09, Vol.40 (9), p.1619-1665
issn 0360-5302
1532-4133
language eng
recordid cdi_crossref_primary_10_1080_03605302_2015_1030955
source Taylor & Francis Journals Complete
subjects Conservation laws
Construction
Entropy
Mathematical models
Partial differential equations
Pressureless Euler/Euler-poisson
Pressureless gas system
Scalars
Stability
Uniqueness
Viscosity
Wasserstein metric
title One-Dimensional Pressureless Gas Systems with/without Viscosity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A28%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-Dimensional%20Pressureless%20Gas%20Systems%20with/without%20Viscosity&rft.jtitle=Communications%20in%20partial%20differential%20equations&rft.au=Nguyen,%20Truyen&rft.date=2015-09-02&rft.volume=40&rft.issue=9&rft.spage=1619&rft.epage=1665&rft.pages=1619-1665&rft.issn=0360-5302&rft.eissn=1532-4133&rft_id=info:doi/10.1080/03605302.2015.1030955&rft_dat=%3Cproquest_cross%3E1709758461%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1690431044&rft_id=info:pmid/&rfr_iscdi=true