One-Dimensional Pressureless Gas Systems with/without Viscosity
A general global existence result for one-dimensional pressureless Euler/Euler-Poisson systems with or without viscosity is obtained by employing the "sticky particles" model. We first construct entropy solutions for some appropriate scalar conservation laws, then we show that these soluti...
Gespeichert in:
Veröffentlicht in: | Communications in partial differential equations 2015-09, Vol.40 (9), p.1619-1665 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1665 |
---|---|
container_issue | 9 |
container_start_page | 1619 |
container_title | Communications in partial differential equations |
container_volume | 40 |
creator | Nguyen, Truyen Tudorascu, Adrian |
description | A general global existence result for one-dimensional pressureless Euler/Euler-Poisson systems with or without viscosity is obtained by employing the "sticky particles" model. We first construct entropy solutions for some appropriate scalar conservation laws, then we show that these solutions encode all the information necessary to obtain solutions for the pressureless systems. Another novel contribution is the stability and uniqueness of solutions, which is obtained via a contraction principle in the Wasserstein metric. |
doi_str_mv | 10.1080/03605302.2015.1030955 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_03605302_2015_1030955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709758461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-51b6a8e188e8694a2efac52e8357879fe5e7eac98ca52ffe28e360b840b602a13</originalsourceid><addsrcrecordid>eNp9kM1Lw0AQxRdRsFb_BCHgxUva_Uw2J5WqVShU8OO6bOMspiTZupNQ-t-7ofXiwcs8GH7vMfMIuWR0wqimUyoyqgTlE06ZiitBC6WOyIgpwVPJhDgmo4FJB-iUnCGuKWWaF3JEbpYtpPdVAy1WvrV18hIAsQ9QR0nmFpPXHXbQYLKtuq_pMHzfJR8Vlh6rbndOTpytES4OOibvjw9vs6d0sZw_z-4WaSly1qWKrTKrgWkNOiuk5eBsqThooXKdFw4U5GDLQpdWceeAa4gHr7Skq4xyy8SYXO9zN8F_94CdaeIJUNe2Bd-jYTktcqVlNqBXf9C170P8LVJZQaVgVMpIqT1VBo8YwJlNqBobdoZRM9Rqfms1Q63mUGv03e59Vet8aOzWh_rTdHZX--CCbcsKjfg_4gcbXn3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1690431044</pqid></control><display><type>article</type><title>One-Dimensional Pressureless Gas Systems with/without Viscosity</title><source>Taylor & Francis Journals Complete</source><creator>Nguyen, Truyen ; Tudorascu, Adrian</creator><creatorcontrib>Nguyen, Truyen ; Tudorascu, Adrian</creatorcontrib><description>A general global existence result for one-dimensional pressureless Euler/Euler-Poisson systems with or without viscosity is obtained by employing the "sticky particles" model. We first construct entropy solutions for some appropriate scalar conservation laws, then we show that these solutions encode all the information necessary to obtain solutions for the pressureless systems. Another novel contribution is the stability and uniqueness of solutions, which is obtained via a contraction principle in the Wasserstein metric.</description><identifier>ISSN: 0360-5302</identifier><identifier>EISSN: 1532-4133</identifier><identifier>DOI: 10.1080/03605302.2015.1030955</identifier><language>eng</language><publisher>Philadelphia: Taylor & Francis Group</publisher><subject>Conservation laws ; Construction ; Entropy ; Mathematical models ; Partial differential equations ; Pressureless Euler/Euler-poisson ; Pressureless gas system ; Scalars ; Stability ; Uniqueness ; Viscosity ; Wasserstein metric</subject><ispartof>Communications in partial differential equations, 2015-09, Vol.40 (9), p.1619-1665</ispartof><rights>Copyright Taylor & Francis Group, LLC 2015</rights><rights>Copyright Taylor & Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-51b6a8e188e8694a2efac52e8357879fe5e7eac98ca52ffe28e360b840b602a13</citedby><cites>FETCH-LOGICAL-c371t-51b6a8e188e8694a2efac52e8357879fe5e7eac98ca52ffe28e360b840b602a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/03605302.2015.1030955$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/03605302.2015.1030955$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,59645,60434</link.rule.ids></links><search><creatorcontrib>Nguyen, Truyen</creatorcontrib><creatorcontrib>Tudorascu, Adrian</creatorcontrib><title>One-Dimensional Pressureless Gas Systems with/without Viscosity</title><title>Communications in partial differential equations</title><description>A general global existence result for one-dimensional pressureless Euler/Euler-Poisson systems with or without viscosity is obtained by employing the "sticky particles" model. We first construct entropy solutions for some appropriate scalar conservation laws, then we show that these solutions encode all the information necessary to obtain solutions for the pressureless systems. Another novel contribution is the stability and uniqueness of solutions, which is obtained via a contraction principle in the Wasserstein metric.</description><subject>Conservation laws</subject><subject>Construction</subject><subject>Entropy</subject><subject>Mathematical models</subject><subject>Partial differential equations</subject><subject>Pressureless Euler/Euler-poisson</subject><subject>Pressureless gas system</subject><subject>Scalars</subject><subject>Stability</subject><subject>Uniqueness</subject><subject>Viscosity</subject><subject>Wasserstein metric</subject><issn>0360-5302</issn><issn>1532-4133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Lw0AQxRdRsFb_BCHgxUva_Uw2J5WqVShU8OO6bOMspiTZupNQ-t-7ofXiwcs8GH7vMfMIuWR0wqimUyoyqgTlE06ZiitBC6WOyIgpwVPJhDgmo4FJB-iUnCGuKWWaF3JEbpYtpPdVAy1WvrV18hIAsQ9QR0nmFpPXHXbQYLKtuq_pMHzfJR8Vlh6rbndOTpytES4OOibvjw9vs6d0sZw_z-4WaSly1qWKrTKrgWkNOiuk5eBsqThooXKdFw4U5GDLQpdWceeAa4gHr7Skq4xyy8SYXO9zN8F_94CdaeIJUNe2Bd-jYTktcqVlNqBXf9C170P8LVJZQaVgVMpIqT1VBo8YwJlNqBobdoZRM9Rqfms1Q63mUGv03e59Vet8aOzWh_rTdHZX--CCbcsKjfg_4gcbXn3A</recordid><startdate>20150902</startdate><enddate>20150902</enddate><creator>Nguyen, Truyen</creator><creator>Tudorascu, Adrian</creator><general>Taylor & Francis Group</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150902</creationdate><title>One-Dimensional Pressureless Gas Systems with/without Viscosity</title><author>Nguyen, Truyen ; Tudorascu, Adrian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-51b6a8e188e8694a2efac52e8357879fe5e7eac98ca52ffe28e360b840b602a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Conservation laws</topic><topic>Construction</topic><topic>Entropy</topic><topic>Mathematical models</topic><topic>Partial differential equations</topic><topic>Pressureless Euler/Euler-poisson</topic><topic>Pressureless gas system</topic><topic>Scalars</topic><topic>Stability</topic><topic>Uniqueness</topic><topic>Viscosity</topic><topic>Wasserstein metric</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Truyen</creatorcontrib><creatorcontrib>Tudorascu, Adrian</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Truyen</au><au>Tudorascu, Adrian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-Dimensional Pressureless Gas Systems with/without Viscosity</atitle><jtitle>Communications in partial differential equations</jtitle><date>2015-09-02</date><risdate>2015</risdate><volume>40</volume><issue>9</issue><spage>1619</spage><epage>1665</epage><pages>1619-1665</pages><issn>0360-5302</issn><eissn>1532-4133</eissn><abstract>A general global existence result for one-dimensional pressureless Euler/Euler-Poisson systems with or without viscosity is obtained by employing the "sticky particles" model. We first construct entropy solutions for some appropriate scalar conservation laws, then we show that these solutions encode all the information necessary to obtain solutions for the pressureless systems. Another novel contribution is the stability and uniqueness of solutions, which is obtained via a contraction principle in the Wasserstein metric.</abstract><cop>Philadelphia</cop><pub>Taylor & Francis Group</pub><doi>10.1080/03605302.2015.1030955</doi><tpages>47</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-5302 |
ispartof | Communications in partial differential equations, 2015-09, Vol.40 (9), p.1619-1665 |
issn | 0360-5302 1532-4133 |
language | eng |
recordid | cdi_crossref_primary_10_1080_03605302_2015_1030955 |
source | Taylor & Francis Journals Complete |
subjects | Conservation laws Construction Entropy Mathematical models Partial differential equations Pressureless Euler/Euler-poisson Pressureless gas system Scalars Stability Uniqueness Viscosity Wasserstein metric |
title | One-Dimensional Pressureless Gas Systems with/without Viscosity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A28%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-Dimensional%20Pressureless%20Gas%20Systems%20with/without%20Viscosity&rft.jtitle=Communications%20in%20partial%20differential%20equations&rft.au=Nguyen,%20Truyen&rft.date=2015-09-02&rft.volume=40&rft.issue=9&rft.spage=1619&rft.epage=1665&rft.pages=1619-1665&rft.issn=0360-5302&rft.eissn=1532-4133&rft_id=info:doi/10.1080/03605302.2015.1030955&rft_dat=%3Cproquest_cross%3E1709758461%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1690431044&rft_id=info:pmid/&rfr_iscdi=true |