Lubrication Approximation for Thin Viscous Films: Asymptotic Behavior of Nonnegative Solutions

We use standard regularized equations and adapted entropy functionals to prove exponential asymptotic decay in the H 1 norm for nonnegative weak solutions of fourth-order nonlinear degenerate parabolic equations of lubrication approximation for thin viscous film type. The weak solutions considered a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in partial differential equations 2007-08, Vol.32 (7), p.1147-1172
1. Verfasser: Tudorascu, Adrian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1172
container_issue 7
container_start_page 1147
container_title Communications in partial differential equations
container_volume 32
creator Tudorascu, Adrian
description We use standard regularized equations and adapted entropy functionals to prove exponential asymptotic decay in the H 1 norm for nonnegative weak solutions of fourth-order nonlinear degenerate parabolic equations of lubrication approximation for thin viscous film type. The weak solutions considered arise as limits of solutions for the regularized problems. Relaxed problems, with second-order nonlinear terms of porous media type are also successfully treated by the same means. The problems investigated here are one-dimensional in space, with power-law nonlinearities. Our approach is direct and natural, as it is adapted to deal with the more complex nonlinear terms occurring in the regularized, approximating problems.
doi_str_mv 10.1080/03605300600987272
format Article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_03605300600987272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_03605300600987272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-4ade87099aadd2cc02e254108ca251671087f653618f67be5fb307e2a73c1f2c3</originalsourceid><addsrcrecordid>eNqFkEFOwzAQRS0EEqVwAHa-QGBsJ3GC2JSKAlIFCwpLItexqVESR7Zb2tvjKuwqxGpmNP_90R-ELglcESjgGlgOGQPIAcqCU06P0IhkjCYpYewYjfb7JAroKTrz_guAFLRMR-hjvl46I0UwtsOTvnd2a9ph0tbhxcp0-N14adcez0zT-hs88bu2DzYYie_USmxM1FmNn23Xqc-IbhR-tc167-HP0YkWjVcXv3WM3mb3i-ljMn95eJpO5olkaR6SVNSq4FCWQtQ1lRKoolkag0lBM5Lz2HGdZywnhc75UmV6yYArKjiTRFPJxogMvtJZ753SVe9iDrerCFT7B1UHD4oMHxjTxait-Lauqasgdo112olOGn9IVWEbInn7L8n-PvwDw5V-4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lubrication Approximation for Thin Viscous Films: Asymptotic Behavior of Nonnegative Solutions</title><source>Taylor &amp; Francis Journals Complete</source><creator>Tudorascu, Adrian</creator><creatorcontrib>Tudorascu, Adrian</creatorcontrib><description>We use standard regularized equations and adapted entropy functionals to prove exponential asymptotic decay in the H 1 norm for nonnegative weak solutions of fourth-order nonlinear degenerate parabolic equations of lubrication approximation for thin viscous film type. The weak solutions considered arise as limits of solutions for the regularized problems. Relaxed problems, with second-order nonlinear terms of porous media type are also successfully treated by the same means. The problems investigated here are one-dimensional in space, with power-law nonlinearities. Our approach is direct and natural, as it is adapted to deal with the more complex nonlinear terms occurring in the regularized, approximating problems.</description><identifier>ISSN: 0360-5302</identifier><identifier>EISSN: 1532-4133</identifier><identifier>DOI: 10.1080/03605300600987272</identifier><language>eng</language><publisher>Taylor &amp; Francis Group</publisher><subject>Asymptotic decay ; Entropy dissipation ; Exponential decay ; Fourth-order nonlinear parabolic equation</subject><ispartof>Communications in partial differential equations, 2007-08, Vol.32 (7), p.1147-1172</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-4ade87099aadd2cc02e254108ca251671087f653618f67be5fb307e2a73c1f2c3</citedby><cites>FETCH-LOGICAL-c346t-4ade87099aadd2cc02e254108ca251671087f653618f67be5fb307e2a73c1f2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/03605300600987272$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/03605300600987272$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,59645,60434</link.rule.ids></links><search><creatorcontrib>Tudorascu, Adrian</creatorcontrib><title>Lubrication Approximation for Thin Viscous Films: Asymptotic Behavior of Nonnegative Solutions</title><title>Communications in partial differential equations</title><description>We use standard regularized equations and adapted entropy functionals to prove exponential asymptotic decay in the H 1 norm for nonnegative weak solutions of fourth-order nonlinear degenerate parabolic equations of lubrication approximation for thin viscous film type. The weak solutions considered arise as limits of solutions for the regularized problems. Relaxed problems, with second-order nonlinear terms of porous media type are also successfully treated by the same means. The problems investigated here are one-dimensional in space, with power-law nonlinearities. Our approach is direct and natural, as it is adapted to deal with the more complex nonlinear terms occurring in the regularized, approximating problems.</description><subject>Asymptotic decay</subject><subject>Entropy dissipation</subject><subject>Exponential decay</subject><subject>Fourth-order nonlinear parabolic equation</subject><issn>0360-5302</issn><issn>1532-4133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkEFOwzAQRS0EEqVwAHa-QGBsJ3GC2JSKAlIFCwpLItexqVESR7Zb2tvjKuwqxGpmNP_90R-ELglcESjgGlgOGQPIAcqCU06P0IhkjCYpYewYjfb7JAroKTrz_guAFLRMR-hjvl46I0UwtsOTvnd2a9ph0tbhxcp0-N14adcez0zT-hs88bu2DzYYie_USmxM1FmNn23Xqc-IbhR-tc167-HP0YkWjVcXv3WM3mb3i-ljMn95eJpO5olkaR6SVNSq4FCWQtQ1lRKoolkag0lBM5Lz2HGdZywnhc75UmV6yYArKjiTRFPJxogMvtJZ753SVe9iDrerCFT7B1UHD4oMHxjTxait-Lauqasgdo112olOGn9IVWEbInn7L8n-PvwDw5V-4Q</recordid><startdate>20070809</startdate><enddate>20070809</enddate><creator>Tudorascu, Adrian</creator><general>Taylor &amp; Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20070809</creationdate><title>Lubrication Approximation for Thin Viscous Films: Asymptotic Behavior of Nonnegative Solutions</title><author>Tudorascu, Adrian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-4ade87099aadd2cc02e254108ca251671087f653618f67be5fb307e2a73c1f2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Asymptotic decay</topic><topic>Entropy dissipation</topic><topic>Exponential decay</topic><topic>Fourth-order nonlinear parabolic equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tudorascu, Adrian</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tudorascu, Adrian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lubrication Approximation for Thin Viscous Films: Asymptotic Behavior of Nonnegative Solutions</atitle><jtitle>Communications in partial differential equations</jtitle><date>2007-08-09</date><risdate>2007</risdate><volume>32</volume><issue>7</issue><spage>1147</spage><epage>1172</epage><pages>1147-1172</pages><issn>0360-5302</issn><eissn>1532-4133</eissn><abstract>We use standard regularized equations and adapted entropy functionals to prove exponential asymptotic decay in the H 1 norm for nonnegative weak solutions of fourth-order nonlinear degenerate parabolic equations of lubrication approximation for thin viscous film type. The weak solutions considered arise as limits of solutions for the regularized problems. Relaxed problems, with second-order nonlinear terms of porous media type are also successfully treated by the same means. The problems investigated here are one-dimensional in space, with power-law nonlinearities. Our approach is direct and natural, as it is adapted to deal with the more complex nonlinear terms occurring in the regularized, approximating problems.</abstract><pub>Taylor &amp; Francis Group</pub><doi>10.1080/03605300600987272</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-5302
ispartof Communications in partial differential equations, 2007-08, Vol.32 (7), p.1147-1172
issn 0360-5302
1532-4133
language eng
recordid cdi_crossref_primary_10_1080_03605300600987272
source Taylor & Francis Journals Complete
subjects Asymptotic decay
Entropy dissipation
Exponential decay
Fourth-order nonlinear parabolic equation
title Lubrication Approximation for Thin Viscous Films: Asymptotic Behavior of Nonnegative Solutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A51%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lubrication%20Approximation%20for%20Thin%20Viscous%20Films:%20Asymptotic%20Behavior%20of%20Nonnegative%20Solutions&rft.jtitle=Communications%20in%20partial%20differential%20equations&rft.au=Tudorascu,%20Adrian&rft.date=2007-08-09&rft.volume=32&rft.issue=7&rft.spage=1147&rft.epage=1172&rft.pages=1147-1172&rft.issn=0360-5302&rft.eissn=1532-4133&rft_id=info:doi/10.1080/03605300600987272&rft_dat=%3Ccrossref_infor%3E10_1080_03605300600987272%3C/crossref_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true