Pseudodifferential Operators on Prehomogeneous Vector Spaces
Let G be a connected, linear algebraic group defined over ℝ, acting regularly on a finite dimensional vector space V over ℂ with ℝ-structure V ℝ . Assume that V possesses a Zariski-dense orbit, so that (G, ϱ, V) becomes a prehomogeneous vector space over ℝ. We consider the left regular representatio...
Gespeichert in:
Veröffentlicht in: | Communications in partial differential equations 2006-04, Vol.31 (4), p.515-546 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 546 |
---|---|
container_issue | 4 |
container_start_page | 515 |
container_title | Communications in partial differential equations |
container_volume | 31 |
creator | Ramacher, Pablo |
description | Let G be a connected, linear algebraic group defined over ℝ, acting regularly on a finite dimensional vector space V over ℂ with ℝ-structure V
ℝ
. Assume that V possesses a Zariski-dense orbit, so that (G, ϱ, V) becomes a prehomogeneous vector space over ℝ. We consider the left regular representation π of the group of ℝ-rational points G
ℝ
on the Banach space C
0
(V
ℝ
) of continuous functions on V
ℝ
vanishing at infinity, and study the convolution operators π(f), where f is a rapidly decreasing function on the identity component of G
ℝ
. Denote the complement of the dense orbit by S, and put S
ℝ
= S ∩ V
ℝ
. It turns out that, on V
ℝ
− S
ℝ
, π(f) is a smooth operator. If S
ℝ
= {0}, the restriction of the Schwartz kernel of π(f) to the diagonal defines a homogeneous distribution on V
ℝ
− {0}. Its nonunique extension to V
ℝ
can then be regarded as a trace of π(f). If G is reductive, and S and S
ℝ
are irreducible hypersurfaces, π(f) corresponds, on each connected component of V
ℝ
− S
ℝ
, to a totally characteristic pseudodifferential operator. In this case, the restriction of the Schwartz kernel of π(f) to the diagonal defines a distribution on V
ℝ
− S
ℝ
given by some power |p(m)|
s
of a relative invariant p(m) of (G, ϱ, V) and, as a consequence of the Fundamental Theorem of Prehomogeneous Vector Spaces, its extension to V
ℝ
, and the complex s-plane, satisfies functional equations similar to those for local zeta functions. A trace of π(f) can then be defined by subtracting the singular contributions of the poles of the meromorphic extension. |
doi_str_mv | 10.1080/03605300500455891 |
format | Article |
fullrecord | <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_03605300500455891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_03605300500455891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-2304ee46f422fe8b47400c0298f2a8cb0a43bd36126c13ee7b54dbb585eaad5f3</originalsourceid><addsrcrecordid>eNqFz81KAzEUBeAgCtbqA7ibFxi9yU2mGehGilqh0II_25DJ3OjIzKQkU7Rvb0vdFXR1F-d-Bw5j1xxuOGi4BSxAIYACkErpkp-wEVcocskRT9lon-e7B3HOLlL6BOBalHLEpqtEmzrUjfcUqR8a22bLNUU7hJiy0GerSB-hC-_UU9ik7I3cLsme19ZRumRn3raJrn7vmL0-3L_M5vli-fg0u1vkDmUx5AJBEsnCSyE86UpOJIADUWovrHYVWIlVjQUXheNINKmUrKtKaUXW1srjmPFDr4shpUjerGPT2bg1HMx-vjmavzPTg2l6H2Jnv0JsazPYbRuij7Z3TTL4F5_8y4-UGb4H_AHKTXLM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Pseudodifferential Operators on Prehomogeneous Vector Spaces</title><source>Taylor & Francis Journals Complete</source><creator>Ramacher, Pablo</creator><creatorcontrib>Ramacher, Pablo</creatorcontrib><description>Let G be a connected, linear algebraic group defined over ℝ, acting regularly on a finite dimensional vector space V over ℂ with ℝ-structure V
ℝ
. Assume that V possesses a Zariski-dense orbit, so that (G, ϱ, V) becomes a prehomogeneous vector space over ℝ. We consider the left regular representation π of the group of ℝ-rational points G
ℝ
on the Banach space C
0
(V
ℝ
) of continuous functions on V
ℝ
vanishing at infinity, and study the convolution operators π(f), where f is a rapidly decreasing function on the identity component of G
ℝ
. Denote the complement of the dense orbit by S, and put S
ℝ
= S ∩ V
ℝ
. It turns out that, on V
ℝ
− S
ℝ
, π(f) is a smooth operator. If S
ℝ
= {0}, the restriction of the Schwartz kernel of π(f) to the diagonal defines a homogeneous distribution on V
ℝ
− {0}. Its nonunique extension to V
ℝ
can then be regarded as a trace of π(f). If G is reductive, and S and S
ℝ
are irreducible hypersurfaces, π(f) corresponds, on each connected component of V
ℝ
− S
ℝ
, to a totally characteristic pseudodifferential operator. In this case, the restriction of the Schwartz kernel of π(f) to the diagonal defines a distribution on V
ℝ
− S
ℝ
given by some power |p(m)|
s
of a relative invariant p(m) of (G, ϱ, V) and, as a consequence of the Fundamental Theorem of Prehomogeneous Vector Spaces, its extension to V
ℝ
, and the complex s-plane, satisfies functional equations similar to those for local zeta functions. A trace of π(f) can then be defined by subtracting the singular contributions of the poles of the meromorphic extension.</description><identifier>ISSN: 0360-5302</identifier><identifier>EISSN: 1532-4133</identifier><identifier>DOI: 10.1080/03605300500455891</identifier><language>eng</language><publisher>Taylor & Francis Group</publisher><subject>Elliptic operators ; Kernels of holomorphic semigroups ; Local zeta functions ; Prehomogeneous vector spaces ; Totally characteristic pseudo-differential operators</subject><ispartof>Communications in partial differential equations, 2006-04, Vol.31 (4), p.515-546</ispartof><rights>Copyright Taylor & Francis Group, LLC 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-2304ee46f422fe8b47400c0298f2a8cb0a43bd36126c13ee7b54dbb585eaad5f3</citedby><cites>FETCH-LOGICAL-c346t-2304ee46f422fe8b47400c0298f2a8cb0a43bd36126c13ee7b54dbb585eaad5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/03605300500455891$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/03605300500455891$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,59628,60417</link.rule.ids></links><search><creatorcontrib>Ramacher, Pablo</creatorcontrib><title>Pseudodifferential Operators on Prehomogeneous Vector Spaces</title><title>Communications in partial differential equations</title><description>Let G be a connected, linear algebraic group defined over ℝ, acting regularly on a finite dimensional vector space V over ℂ with ℝ-structure V
ℝ
. Assume that V possesses a Zariski-dense orbit, so that (G, ϱ, V) becomes a prehomogeneous vector space over ℝ. We consider the left regular representation π of the group of ℝ-rational points G
ℝ
on the Banach space C
0
(V
ℝ
) of continuous functions on V
ℝ
vanishing at infinity, and study the convolution operators π(f), where f is a rapidly decreasing function on the identity component of G
ℝ
. Denote the complement of the dense orbit by S, and put S
ℝ
= S ∩ V
ℝ
. It turns out that, on V
ℝ
− S
ℝ
, π(f) is a smooth operator. If S
ℝ
= {0}, the restriction of the Schwartz kernel of π(f) to the diagonal defines a homogeneous distribution on V
ℝ
− {0}. Its nonunique extension to V
ℝ
can then be regarded as a trace of π(f). If G is reductive, and S and S
ℝ
are irreducible hypersurfaces, π(f) corresponds, on each connected component of V
ℝ
− S
ℝ
, to a totally characteristic pseudodifferential operator. In this case, the restriction of the Schwartz kernel of π(f) to the diagonal defines a distribution on V
ℝ
− S
ℝ
given by some power |p(m)|
s
of a relative invariant p(m) of (G, ϱ, V) and, as a consequence of the Fundamental Theorem of Prehomogeneous Vector Spaces, its extension to V
ℝ
, and the complex s-plane, satisfies functional equations similar to those for local zeta functions. A trace of π(f) can then be defined by subtracting the singular contributions of the poles of the meromorphic extension.</description><subject>Elliptic operators</subject><subject>Kernels of holomorphic semigroups</subject><subject>Local zeta functions</subject><subject>Prehomogeneous vector spaces</subject><subject>Totally characteristic pseudo-differential operators</subject><issn>0360-5302</issn><issn>1532-4133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFz81KAzEUBeAgCtbqA7ibFxi9yU2mGehGilqh0II_25DJ3OjIzKQkU7Rvb0vdFXR1F-d-Bw5j1xxuOGi4BSxAIYACkErpkp-wEVcocskRT9lon-e7B3HOLlL6BOBalHLEpqtEmzrUjfcUqR8a22bLNUU7hJiy0GerSB-hC-_UU9ik7I3cLsme19ZRumRn3raJrn7vmL0-3L_M5vli-fg0u1vkDmUx5AJBEsnCSyE86UpOJIADUWovrHYVWIlVjQUXheNINKmUrKtKaUXW1srjmPFDr4shpUjerGPT2bg1HMx-vjmavzPTg2l6H2Jnv0JsazPYbRuij7Z3TTL4F5_8y4-UGb4H_AHKTXLM</recordid><startdate>20060401</startdate><enddate>20060401</enddate><creator>Ramacher, Pablo</creator><general>Taylor & Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20060401</creationdate><title>Pseudodifferential Operators on Prehomogeneous Vector Spaces</title><author>Ramacher, Pablo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-2304ee46f422fe8b47400c0298f2a8cb0a43bd36126c13ee7b54dbb585eaad5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Elliptic operators</topic><topic>Kernels of holomorphic semigroups</topic><topic>Local zeta functions</topic><topic>Prehomogeneous vector spaces</topic><topic>Totally characteristic pseudo-differential operators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramacher, Pablo</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramacher, Pablo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pseudodifferential Operators on Prehomogeneous Vector Spaces</atitle><jtitle>Communications in partial differential equations</jtitle><date>2006-04-01</date><risdate>2006</risdate><volume>31</volume><issue>4</issue><spage>515</spage><epage>546</epage><pages>515-546</pages><issn>0360-5302</issn><eissn>1532-4133</eissn><abstract>Let G be a connected, linear algebraic group defined over ℝ, acting regularly on a finite dimensional vector space V over ℂ with ℝ-structure V
ℝ
. Assume that V possesses a Zariski-dense orbit, so that (G, ϱ, V) becomes a prehomogeneous vector space over ℝ. We consider the left regular representation π of the group of ℝ-rational points G
ℝ
on the Banach space C
0
(V
ℝ
) of continuous functions on V
ℝ
vanishing at infinity, and study the convolution operators π(f), where f is a rapidly decreasing function on the identity component of G
ℝ
. Denote the complement of the dense orbit by S, and put S
ℝ
= S ∩ V
ℝ
. It turns out that, on V
ℝ
− S
ℝ
, π(f) is a smooth operator. If S
ℝ
= {0}, the restriction of the Schwartz kernel of π(f) to the diagonal defines a homogeneous distribution on V
ℝ
− {0}. Its nonunique extension to V
ℝ
can then be regarded as a trace of π(f). If G is reductive, and S and S
ℝ
are irreducible hypersurfaces, π(f) corresponds, on each connected component of V
ℝ
− S
ℝ
, to a totally characteristic pseudodifferential operator. In this case, the restriction of the Schwartz kernel of π(f) to the diagonal defines a distribution on V
ℝ
− S
ℝ
given by some power |p(m)|
s
of a relative invariant p(m) of (G, ϱ, V) and, as a consequence of the Fundamental Theorem of Prehomogeneous Vector Spaces, its extension to V
ℝ
, and the complex s-plane, satisfies functional equations similar to those for local zeta functions. A trace of π(f) can then be defined by subtracting the singular contributions of the poles of the meromorphic extension.</abstract><pub>Taylor & Francis Group</pub><doi>10.1080/03605300500455891</doi><tpages>32</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-5302 |
ispartof | Communications in partial differential equations, 2006-04, Vol.31 (4), p.515-546 |
issn | 0360-5302 1532-4133 |
language | eng |
recordid | cdi_crossref_primary_10_1080_03605300500455891 |
source | Taylor & Francis Journals Complete |
subjects | Elliptic operators Kernels of holomorphic semigroups Local zeta functions Prehomogeneous vector spaces Totally characteristic pseudo-differential operators |
title | Pseudodifferential Operators on Prehomogeneous Vector Spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A31%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pseudodifferential%20Operators%20on%20Prehomogeneous%20Vector%20Spaces&rft.jtitle=Communications%20in%20partial%20differential%20equations&rft.au=Ramacher,%20Pablo&rft.date=2006-04-01&rft.volume=31&rft.issue=4&rft.spage=515&rft.epage=546&rft.pages=515-546&rft.issn=0360-5302&rft.eissn=1532-4133&rft_id=info:doi/10.1080/03605300500455891&rft_dat=%3Ccrossref_infor%3E10_1080_03605300500455891%3C/crossref_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |