Grouping of contracts in insurance using neural networks

Despite the high importance of grouping in practice, there exists little research on the respective topic. The present work presents a framework for grouping and a novel method to optimize model points in life insurance. We introduce a supervised clustering algorithm using neural networks to form a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scandinavian actuarial journal 2021-04, Vol.2021 (4), p.295-322
Hauptverfasser: Kiermayer, Mark, Weiß, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 322
container_issue 4
container_start_page 295
container_title Scandinavian actuarial journal
container_volume 2021
creator Kiermayer, Mark
Weiß, Christian
description Despite the high importance of grouping in practice, there exists little research on the respective topic. The present work presents a framework for grouping and a novel method to optimize model points in life insurance. We introduce a supervised clustering algorithm using neural networks to form a less complex portfolio, alias grouping. In a two-step approach, we first approximate selected characteristics of a portfolio. Next, we nest this estimator in a neural network, such that cluster representatives, alias model points, are calibrated in accordance with their effect on the characteristics of the portfolio. This approach is similar to the work by Horvath, B., Muguruza, A. & Tomas, M. [(2019). Deep learning volatility. Available on arXiv 1901.09647.], who focus on the calibration of implied volatility models. Our numerical experiments for term life insurance and defined contribution pension plans show significant improvements, in terms of capturing the characteristics of a portfolio, of the neural network approach over K-means clustering, a common baseline algorithm for grouping. These results are further confirmed by a sensitivity analysis of the investment surplus, where we additionally show the flexibility of the model to include common industry practice.
doi_str_mv 10.1080/03461238.2020.1836676
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_03461238_2020_1836676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2522983655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-71bd3b8b3a5ff2dce24a972f6141b9c0687f6c7f2c970acd83affdc16742b85c3</originalsourceid><addsrcrecordid>eNp9kFtLxDAQhYMouF5-glDwueskaS59UxZdhQVf9DmkaSJdu8matMj-e1O64pswMEzynRnOQegGwxKDhDugFceEyiUBkp8k5VzwE7TAnOGSAIVTtJiYcoLO0UVKWwDgQvIFkusYxn3nP4rgChP8ELUZUtH5XGmM2htbjGn69zaPfW7Dd4if6QqdOd0ne33sl-j96fFt9VxuXtcvq4dNaWjNhlLgpqWNbKhmzpHWWFLpWhDHcYWb2gCXwnEjHDG1AG1aSbVzrcFcVKSRzNBLdDvv3cfwNdo0qG0Yo88nFWGE1NktY5liM2ViSClap_ax2-l4UBjUFJL6DUlNIaljSFlXzDqbvXfpTyWYrKrM1Bm5n5HOuxB3OrvvWzXoQx-imwLKMvr_lR_kUHhd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2522983655</pqid></control><display><type>article</type><title>Grouping of contracts in insurance using neural networks</title><source>Business Source Complete</source><creator>Kiermayer, Mark ; Weiß, Christian</creator><creatorcontrib>Kiermayer, Mark ; Weiß, Christian</creatorcontrib><description>Despite the high importance of grouping in practice, there exists little research on the respective topic. The present work presents a framework for grouping and a novel method to optimize model points in life insurance. We introduce a supervised clustering algorithm using neural networks to form a less complex portfolio, alias grouping. In a two-step approach, we first approximate selected characteristics of a portfolio. Next, we nest this estimator in a neural network, such that cluster representatives, alias model points, are calibrated in accordance with their effect on the characteristics of the portfolio. This approach is similar to the work by Horvath, B., Muguruza, A. &amp; Tomas, M. [(2019). Deep learning volatility. Available on arXiv 1901.09647.], who focus on the calibration of implied volatility models. Our numerical experiments for term life insurance and defined contribution pension plans show significant improvements, in terms of capturing the characteristics of a portfolio, of the neural network approach over K-means clustering, a common baseline algorithm for grouping. These results are further confirmed by a sensitivity analysis of the investment surplus, where we additionally show the flexibility of the model to include common industry practice.</description><identifier>ISSN: 0346-1238</identifier><identifier>EISSN: 1651-2030</identifier><identifier>DOI: 10.1080/03461238.2020.1836676</identifier><language>eng</language><publisher>Stockholm: Taylor &amp; Francis</publisher><subject>Actuarial science ; bagging ; defined contribution plan ; Grouping ; K-means clustering ; Life insurance ; LSTM ; Neural networks ; non-linear optimization ; supervised learning ; term life insurance</subject><ispartof>Scandinavian actuarial journal, 2021-04, Vol.2021 (4), p.295-322</ispartof><rights>2020 Informa UK Limited, trading as Taylor &amp; Francis Group 2020</rights><rights>2020 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-71bd3b8b3a5ff2dce24a972f6141b9c0687f6c7f2c970acd83affdc16742b85c3</citedby><cites>FETCH-LOGICAL-c395t-71bd3b8b3a5ff2dce24a972f6141b9c0687f6c7f2c970acd83affdc16742b85c3</cites><orcidid>0000-0002-3866-6874 ; 0000-0001-7076-2893</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kiermayer, Mark</creatorcontrib><creatorcontrib>Weiß, Christian</creatorcontrib><title>Grouping of contracts in insurance using neural networks</title><title>Scandinavian actuarial journal</title><description>Despite the high importance of grouping in practice, there exists little research on the respective topic. The present work presents a framework for grouping and a novel method to optimize model points in life insurance. We introduce a supervised clustering algorithm using neural networks to form a less complex portfolio, alias grouping. In a two-step approach, we first approximate selected characteristics of a portfolio. Next, we nest this estimator in a neural network, such that cluster representatives, alias model points, are calibrated in accordance with their effect on the characteristics of the portfolio. This approach is similar to the work by Horvath, B., Muguruza, A. &amp; Tomas, M. [(2019). Deep learning volatility. Available on arXiv 1901.09647.], who focus on the calibration of implied volatility models. Our numerical experiments for term life insurance and defined contribution pension plans show significant improvements, in terms of capturing the characteristics of a portfolio, of the neural network approach over K-means clustering, a common baseline algorithm for grouping. These results are further confirmed by a sensitivity analysis of the investment surplus, where we additionally show the flexibility of the model to include common industry practice.</description><subject>Actuarial science</subject><subject>bagging</subject><subject>defined contribution plan</subject><subject>Grouping</subject><subject>K-means clustering</subject><subject>Life insurance</subject><subject>LSTM</subject><subject>Neural networks</subject><subject>non-linear optimization</subject><subject>supervised learning</subject><subject>term life insurance</subject><issn>0346-1238</issn><issn>1651-2030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kFtLxDAQhYMouF5-glDwueskaS59UxZdhQVf9DmkaSJdu8matMj-e1O64pswMEzynRnOQegGwxKDhDugFceEyiUBkp8k5VzwE7TAnOGSAIVTtJiYcoLO0UVKWwDgQvIFkusYxn3nP4rgChP8ELUZUtH5XGmM2htbjGn69zaPfW7Dd4if6QqdOd0ne33sl-j96fFt9VxuXtcvq4dNaWjNhlLgpqWNbKhmzpHWWFLpWhDHcYWb2gCXwnEjHDG1AG1aSbVzrcFcVKSRzNBLdDvv3cfwNdo0qG0Yo88nFWGE1NktY5liM2ViSClap_ax2-l4UBjUFJL6DUlNIaljSFlXzDqbvXfpTyWYrKrM1Bm5n5HOuxB3OrvvWzXoQx-imwLKMvr_lR_kUHhd</recordid><startdate>20210421</startdate><enddate>20210421</enddate><creator>Kiermayer, Mark</creator><creator>Weiß, Christian</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3866-6874</orcidid><orcidid>https://orcid.org/0000-0001-7076-2893</orcidid></search><sort><creationdate>20210421</creationdate><title>Grouping of contracts in insurance using neural networks</title><author>Kiermayer, Mark ; Weiß, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-71bd3b8b3a5ff2dce24a972f6141b9c0687f6c7f2c970acd83affdc16742b85c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Actuarial science</topic><topic>bagging</topic><topic>defined contribution plan</topic><topic>Grouping</topic><topic>K-means clustering</topic><topic>Life insurance</topic><topic>LSTM</topic><topic>Neural networks</topic><topic>non-linear optimization</topic><topic>supervised learning</topic><topic>term life insurance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiermayer, Mark</creatorcontrib><creatorcontrib>Weiß, Christian</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><jtitle>Scandinavian actuarial journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiermayer, Mark</au><au>Weiß, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grouping of contracts in insurance using neural networks</atitle><jtitle>Scandinavian actuarial journal</jtitle><date>2021-04-21</date><risdate>2021</risdate><volume>2021</volume><issue>4</issue><spage>295</spage><epage>322</epage><pages>295-322</pages><issn>0346-1238</issn><eissn>1651-2030</eissn><abstract>Despite the high importance of grouping in practice, there exists little research on the respective topic. The present work presents a framework for grouping and a novel method to optimize model points in life insurance. We introduce a supervised clustering algorithm using neural networks to form a less complex portfolio, alias grouping. In a two-step approach, we first approximate selected characteristics of a portfolio. Next, we nest this estimator in a neural network, such that cluster representatives, alias model points, are calibrated in accordance with their effect on the characteristics of the portfolio. This approach is similar to the work by Horvath, B., Muguruza, A. &amp; Tomas, M. [(2019). Deep learning volatility. Available on arXiv 1901.09647.], who focus on the calibration of implied volatility models. Our numerical experiments for term life insurance and defined contribution pension plans show significant improvements, in terms of capturing the characteristics of a portfolio, of the neural network approach over K-means clustering, a common baseline algorithm for grouping. These results are further confirmed by a sensitivity analysis of the investment surplus, where we additionally show the flexibility of the model to include common industry practice.</abstract><cop>Stockholm</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/03461238.2020.1836676</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-3866-6874</orcidid><orcidid>https://orcid.org/0000-0001-7076-2893</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0346-1238
ispartof Scandinavian actuarial journal, 2021-04, Vol.2021 (4), p.295-322
issn 0346-1238
1651-2030
language eng
recordid cdi_crossref_primary_10_1080_03461238_2020_1836676
source Business Source Complete
subjects Actuarial science
bagging
defined contribution plan
Grouping
K-means clustering
Life insurance
LSTM
Neural networks
non-linear optimization
supervised learning
term life insurance
title Grouping of contracts in insurance using neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A45%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grouping%20of%20contracts%20in%20insurance%20using%20neural%20networks&rft.jtitle=Scandinavian%20actuarial%20journal&rft.au=Kiermayer,%20Mark&rft.date=2021-04-21&rft.volume=2021&rft.issue=4&rft.spage=295&rft.epage=322&rft.pages=295-322&rft.issn=0346-1238&rft.eissn=1651-2030&rft_id=info:doi/10.1080/03461238.2020.1836676&rft_dat=%3Cproquest_cross%3E2522983655%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2522983655&rft_id=info:pmid/&rfr_iscdi=true