Every integral matrix is the sum of three squares
In the ring of integral nby n matrices (n ≥ 2) every matrix is the sum of three squares.
Gespeichert in:
Veröffentlicht in: | Linear & multilinear algebra 1986-11, Vol.20 (1), p.1-4 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Linear & multilinear algebra |
container_volume | 20 |
creator | Vaserstein, Leonid N. |
description | In the ring of integral nby n matrices (n ≥ 2) every matrix is the sum of three squares. |
doi_str_mv | 10.1080/03081088608817738 |
format | Article |
fullrecord | <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_03081088608817738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_03081088608817738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c213t-90ddf71a37d883a6459db87e16fc8d15d15ce2d75325ceb78e9c1613447df9e23</originalsourceid><addsrcrecordid>eNp1j91KxDAQhYMoWFcfwLu8QDXTNE0K3siyusKCN3odsvnRSH900lX79mZZ70SYYc4w8x04hFwCuwKm2DXjTGWhmtwgJVdHpADR8FIAb49Jsb-X-UGekrOU3hhjNXBREFh9epxpHCb_gqajvZkwftOY6PTqadr1dAxZos_Lx86gT-fkJJgu-YvfuSDPd6un5brcPN4_LG83pa2AT2XLnAsSDJdOKW6aWrRuq6SHJljlQOSyvnJS8CqLrVS-tdAAr2vpQusrviBw8LU4poQ-6HeMvcFZA9P7zPpP5szcHJg4hBF78zVi5_Rk5m7EgGawMWn-P_4DNOdbcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Every integral matrix is the sum of three squares</title><source>Access via Taylor & Francis</source><creator>Vaserstein, Leonid N.</creator><creatorcontrib>Vaserstein, Leonid N.</creatorcontrib><description>In the ring of integral nby n matrices (n ≥ 2) every matrix is the sum of three squares.</description><identifier>ISSN: 0308-1087</identifier><identifier>EISSN: 1563-5139</identifier><identifier>DOI: 10.1080/03081088608817738</identifier><language>eng</language><publisher>Gordon and Breach Science Publishers</publisher><ispartof>Linear & multilinear algebra, 1986-11, Vol.20 (1), p.1-4</ispartof><rights>Copyright Taylor & Francis Group, LLC 1986</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c213t-90ddf71a37d883a6459db87e16fc8d15d15ce2d75325ceb78e9c1613447df9e23</citedby><cites>FETCH-LOGICAL-c213t-90ddf71a37d883a6459db87e16fc8d15d15ce2d75325ceb78e9c1613447df9e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/03081088608817738$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/03081088608817738$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,60436</link.rule.ids></links><search><creatorcontrib>Vaserstein, Leonid N.</creatorcontrib><title>Every integral matrix is the sum of three squares</title><title>Linear & multilinear algebra</title><description>In the ring of integral nby n matrices (n ≥ 2) every matrix is the sum of three squares.</description><issn>0308-1087</issn><issn>1563-5139</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNp1j91KxDAQhYMoWFcfwLu8QDXTNE0K3siyusKCN3odsvnRSH900lX79mZZ70SYYc4w8x04hFwCuwKm2DXjTGWhmtwgJVdHpADR8FIAb49Jsb-X-UGekrOU3hhjNXBREFh9epxpHCb_gqajvZkwftOY6PTqadr1dAxZos_Lx86gT-fkJJgu-YvfuSDPd6un5brcPN4_LG83pa2AT2XLnAsSDJdOKW6aWrRuq6SHJljlQOSyvnJS8CqLrVS-tdAAr2vpQusrviBw8LU4poQ-6HeMvcFZA9P7zPpP5szcHJg4hBF78zVi5_Rk5m7EgGawMWn-P_4DNOdbcg</recordid><startdate>19861101</startdate><enddate>19861101</enddate><creator>Vaserstein, Leonid N.</creator><general>Gordon and Breach Science Publishers</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19861101</creationdate><title>Every integral matrix is the sum of three squares</title><author>Vaserstein, Leonid N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c213t-90ddf71a37d883a6459db87e16fc8d15d15ce2d75325ceb78e9c1613447df9e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vaserstein, Leonid N.</creatorcontrib><collection>CrossRef</collection><jtitle>Linear & multilinear algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vaserstein, Leonid N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Every integral matrix is the sum of three squares</atitle><jtitle>Linear & multilinear algebra</jtitle><date>1986-11-01</date><risdate>1986</risdate><volume>20</volume><issue>1</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>0308-1087</issn><eissn>1563-5139</eissn><abstract>In the ring of integral nby n matrices (n ≥ 2) every matrix is the sum of three squares.</abstract><pub>Gordon and Breach Science Publishers</pub><doi>10.1080/03081088608817738</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0308-1087 |
ispartof | Linear & multilinear algebra, 1986-11, Vol.20 (1), p.1-4 |
issn | 0308-1087 1563-5139 |
language | eng |
recordid | cdi_crossref_primary_10_1080_03081088608817738 |
source | Access via Taylor & Francis |
title | Every integral matrix is the sum of three squares |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A19%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Every%20integral%20matrix%20is%20the%20sum%20of%20three%20squares&rft.jtitle=Linear%20&%20multilinear%20algebra&rft.au=Vaserstein,%20Leonid%20N.&rft.date=1986-11-01&rft.volume=20&rft.issue=1&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=0308-1087&rft.eissn=1563-5139&rft_id=info:doi/10.1080/03081088608817738&rft_dat=%3Ccrossref_infor%3E10_1080_03081088608817738%3C/crossref_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |