Creating Conductive Copper-Silver Bimetallic Nanostructured Coatings Using a High Temperature Reducing Jet Aerosol Reactor
We report production of bimetallic nanostructured copper- silver coatings by in situ deposition and sintering of metal nanoparticles produced as an aerosol. The metal nanoparticles themselves have potential applications in printed electronics, catalysis, antibacterial coatings, and heat transfer flu...
Gespeichert in:
Veröffentlicht in: | Aerosol science and technology 2013-08, Vol.47 (8), p.858-866 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 866 |
---|---|
container_issue | 8 |
container_start_page | 858 |
container_title | Aerosol science and technology |
container_volume | 47 |
creator | Sharma, Munish K. Buchner, Raymond D. Scharmach, William J. Papavassiliou, Vasilis Swihart, Mark T. |
description | We report production of bimetallic nanostructured copper- silver coatings by in situ deposition and sintering of metal nanoparticles produced as an aerosol. The metal nanoparticles themselves have potential applications in printed electronics, catalysis, antibacterial coatings, and heat transfer fluids. In many applications, nanoparticles are dispersed in an ink, which is then printed or coated onto a substrate and converted into a nanostructured thin film. Direct deposition from the aerosol allows us to produce nanostructured thin films without first dispersing the particles in a solvent. The high temperature reducing jet process allows formation of these metal nanoparticles from low-cost metal salt precursors in the gas phase. In this method, a fuel-rich hydrogen flame provides a low-cost source of energy to drive nanoparticle formation in a reducing environment. The aqueous precursor solution is delivered into the hot combustion product gases within a converging-diverging nozzle. The high-speed gas flow atomizes the precursor and provides exceptionally rapid mixing of the precursor with the hot gases. Here, particles are formed, then immediately quenched and deposited on a glass substrate. The effect of the silver content of the mixed copper-silver films on their electrical conductivity was studied systematically, revealing an abrupt transition from low conductivity to high conductivity between 30 wt.% and 40 wt.% silver.
Copyright 2013 American Association for Aerosol Research |
doi_str_mv | 10.1080/02786826.2013.796338 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_02786826_2013_796338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2980481091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-28d115c74677d5f30b6db60ee710dcfaf3e311e20c51f01cd2024155bb9908d93</originalsourceid><addsrcrecordid>eNqFkcFu1DAURSNEJYaWP2ARCSGxyfQ9O7GdFSqjQqkqkKBdWx7npbhy4sFOisrX4zBtF12AN7bsc671dIviNcIaQcExMKmEYmLNAPlatoJz9axYYcOwklyp58VqQaqFeVG8TOkGAFAyXBW_N5HM5MbrchPGbraTu6V83O0oVt-dv6VYfnADTcZ7Z8svZgxpihmbI3WZ-6um8iotCaY8c9c_yksasm0WpPxGOXN5O6epPKEYUvD50tgpxKPioDc-0av7_bC4-nh6uTmrLr5--rw5uahsLdRUMdUhNlbWQsqu6TlsRbcVQCQROtubnhNHJAa2wR7QdgxYjU2z3bYtqK7lh8W7fe4uhp8zpUkPLlny3owU5qRRSuBMAOP_R2tkDdR1rTL65gl6E-Y45kE08iYv1rYsU_Wesnn0FKnXu-gGE-80gl660w_d6aU7ve8ua2_vw02yxvfRjNalR5dJwSQKkbn3e86NfYiD-RWi7_Rk7nyIDxL_509_ALK_rNE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1355552992</pqid></control><display><type>article</type><title>Creating Conductive Copper-Silver Bimetallic Nanostructured Coatings Using a High Temperature Reducing Jet Aerosol Reactor</title><source>IngentaConnect Free/Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Sharma, Munish K. ; Buchner, Raymond D. ; Scharmach, William J. ; Papavassiliou, Vasilis ; Swihart, Mark T.</creator><creatorcontrib>Sharma, Munish K. ; Buchner, Raymond D. ; Scharmach, William J. ; Papavassiliou, Vasilis ; Swihart, Mark T.</creatorcontrib><description>We report production of bimetallic nanostructured copper- silver coatings by in situ deposition and sintering of metal nanoparticles produced as an aerosol. The metal nanoparticles themselves have potential applications in printed electronics, catalysis, antibacterial coatings, and heat transfer fluids. In many applications, nanoparticles are dispersed in an ink, which is then printed or coated onto a substrate and converted into a nanostructured thin film. Direct deposition from the aerosol allows us to produce nanostructured thin films without first dispersing the particles in a solvent. The high temperature reducing jet process allows formation of these metal nanoparticles from low-cost metal salt precursors in the gas phase. In this method, a fuel-rich hydrogen flame provides a low-cost source of energy to drive nanoparticle formation in a reducing environment. The aqueous precursor solution is delivered into the hot combustion product gases within a converging-diverging nozzle. The high-speed gas flow atomizes the precursor and provides exceptionally rapid mixing of the precursor with the hot gases. Here, particles are formed, then immediately quenched and deposited on a glass substrate. The effect of the silver content of the mixed copper-silver films on their electrical conductivity was studied systematically, revealing an abrupt transition from low conductivity to high conductivity between 30 wt.% and 40 wt.% silver.
Copyright 2013 American Association for Aerosol Research</description><identifier>ISSN: 0278-6826</identifier><identifier>EISSN: 1521-7388</identifier><identifier>DOI: 10.1080/02786826.2013.796338</identifier><identifier>CODEN: ASTYDQ</identifier><language>eng</language><publisher>Colchester: Taylor & Francis Group</publisher><subject>Aerodynamics ; Aerosols ; Aircraft ; BIMETALS ; Chemical reactors ; Chemistry ; COATINGS ; Colloidal state and disperse state ; Conductivity ; DEPOSITION ; ELECTRICAL CONDUCTIVITY ; ELEVATED TEMPERATURE ; Exact sciences and technology ; General and physical chemistry ; MICROSTRUCTURES ; Nanoparticles ; Nanostructure ; Nanostructured ceramics ; PARTICLES ; Precursors ; Protective coatings ; Resistivity ; Silver ; THIN FILMS</subject><ispartof>Aerosol science and technology, 2013-08, Vol.47 (8), p.858-866</ispartof><rights>Copyright Taylor & Francis Group, LLC 2013</rights><rights>2014 INIST-CNRS</rights><rights>Copyright Taylor & Francis Ltd. 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-28d115c74677d5f30b6db60ee710dcfaf3e311e20c51f01cd2024155bb9908d93</citedby><cites>FETCH-LOGICAL-c468t-28d115c74677d5f30b6db60ee710dcfaf3e311e20c51f01cd2024155bb9908d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27627166$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharma, Munish K.</creatorcontrib><creatorcontrib>Buchner, Raymond D.</creatorcontrib><creatorcontrib>Scharmach, William J.</creatorcontrib><creatorcontrib>Papavassiliou, Vasilis</creatorcontrib><creatorcontrib>Swihart, Mark T.</creatorcontrib><title>Creating Conductive Copper-Silver Bimetallic Nanostructured Coatings Using a High Temperature Reducing Jet Aerosol Reactor</title><title>Aerosol science and technology</title><description>We report production of bimetallic nanostructured copper- silver coatings by in situ deposition and sintering of metal nanoparticles produced as an aerosol. The metal nanoparticles themselves have potential applications in printed electronics, catalysis, antibacterial coatings, and heat transfer fluids. In many applications, nanoparticles are dispersed in an ink, which is then printed or coated onto a substrate and converted into a nanostructured thin film. Direct deposition from the aerosol allows us to produce nanostructured thin films without first dispersing the particles in a solvent. The high temperature reducing jet process allows formation of these metal nanoparticles from low-cost metal salt precursors in the gas phase. In this method, a fuel-rich hydrogen flame provides a low-cost source of energy to drive nanoparticle formation in a reducing environment. The aqueous precursor solution is delivered into the hot combustion product gases within a converging-diverging nozzle. The high-speed gas flow atomizes the precursor and provides exceptionally rapid mixing of the precursor with the hot gases. Here, particles are formed, then immediately quenched and deposited on a glass substrate. The effect of the silver content of the mixed copper-silver films on their electrical conductivity was studied systematically, revealing an abrupt transition from low conductivity to high conductivity between 30 wt.% and 40 wt.% silver.
Copyright 2013 American Association for Aerosol Research</description><subject>Aerodynamics</subject><subject>Aerosols</subject><subject>Aircraft</subject><subject>BIMETALS</subject><subject>Chemical reactors</subject><subject>Chemistry</subject><subject>COATINGS</subject><subject>Colloidal state and disperse state</subject><subject>Conductivity</subject><subject>DEPOSITION</subject><subject>ELECTRICAL CONDUCTIVITY</subject><subject>ELEVATED TEMPERATURE</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>MICROSTRUCTURES</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nanostructured ceramics</subject><subject>PARTICLES</subject><subject>Precursors</subject><subject>Protective coatings</subject><subject>Resistivity</subject><subject>Silver</subject><subject>THIN FILMS</subject><issn>0278-6826</issn><issn>1521-7388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAURSNEJYaWP2ARCSGxyfQ9O7GdFSqjQqkqkKBdWx7npbhy4sFOisrX4zBtF12AN7bsc671dIviNcIaQcExMKmEYmLNAPlatoJz9axYYcOwklyp58VqQaqFeVG8TOkGAFAyXBW_N5HM5MbrchPGbraTu6V83O0oVt-dv6VYfnADTcZ7Z8svZgxpihmbI3WZ-6um8iotCaY8c9c_yksasm0WpPxGOXN5O6epPKEYUvD50tgpxKPioDc-0av7_bC4-nh6uTmrLr5--rw5uahsLdRUMdUhNlbWQsqu6TlsRbcVQCQROtubnhNHJAa2wR7QdgxYjU2z3bYtqK7lh8W7fe4uhp8zpUkPLlny3owU5qRRSuBMAOP_R2tkDdR1rTL65gl6E-Y45kE08iYv1rYsU_Wesnn0FKnXu-gGE-80gl660w_d6aU7ve8ua2_vw02yxvfRjNalR5dJwSQKkbn3e86NfYiD-RWi7_Rk7nyIDxL_509_ALK_rNE</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Sharma, Munish K.</creator><creator>Buchner, Raymond D.</creator><creator>Scharmach, William J.</creator><creator>Papavassiliou, Vasilis</creator><creator>Swihart, Mark T.</creator><general>Taylor & Francis Group</general><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7TG</scope><scope>8FD</scope><scope>FR3</scope><scope>KL.</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>H8G</scope><scope>JG9</scope></search><sort><creationdate>20130801</creationdate><title>Creating Conductive Copper-Silver Bimetallic Nanostructured Coatings Using a High Temperature Reducing Jet Aerosol Reactor</title><author>Sharma, Munish K. ; Buchner, Raymond D. ; Scharmach, William J. ; Papavassiliou, Vasilis ; Swihart, Mark T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-28d115c74677d5f30b6db60ee710dcfaf3e311e20c51f01cd2024155bb9908d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aerodynamics</topic><topic>Aerosols</topic><topic>Aircraft</topic><topic>BIMETALS</topic><topic>Chemical reactors</topic><topic>Chemistry</topic><topic>COATINGS</topic><topic>Colloidal state and disperse state</topic><topic>Conductivity</topic><topic>DEPOSITION</topic><topic>ELECTRICAL CONDUCTIVITY</topic><topic>ELEVATED TEMPERATURE</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>MICROSTRUCTURES</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nanostructured ceramics</topic><topic>PARTICLES</topic><topic>Precursors</topic><topic>Protective coatings</topic><topic>Resistivity</topic><topic>Silver</topic><topic>THIN FILMS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Munish K.</creatorcontrib><creatorcontrib>Buchner, Raymond D.</creatorcontrib><creatorcontrib>Scharmach, William J.</creatorcontrib><creatorcontrib>Papavassiliou, Vasilis</creatorcontrib><creatorcontrib>Swihart, Mark T.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><jtitle>Aerosol science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Munish K.</au><au>Buchner, Raymond D.</au><au>Scharmach, William J.</au><au>Papavassiliou, Vasilis</au><au>Swihart, Mark T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Creating Conductive Copper-Silver Bimetallic Nanostructured Coatings Using a High Temperature Reducing Jet Aerosol Reactor</atitle><jtitle>Aerosol science and technology</jtitle><date>2013-08-01</date><risdate>2013</risdate><volume>47</volume><issue>8</issue><spage>858</spage><epage>866</epage><pages>858-866</pages><issn>0278-6826</issn><eissn>1521-7388</eissn><coden>ASTYDQ</coden><abstract>We report production of bimetallic nanostructured copper- silver coatings by in situ deposition and sintering of metal nanoparticles produced as an aerosol. The metal nanoparticles themselves have potential applications in printed electronics, catalysis, antibacterial coatings, and heat transfer fluids. In many applications, nanoparticles are dispersed in an ink, which is then printed or coated onto a substrate and converted into a nanostructured thin film. Direct deposition from the aerosol allows us to produce nanostructured thin films without first dispersing the particles in a solvent. The high temperature reducing jet process allows formation of these metal nanoparticles from low-cost metal salt precursors in the gas phase. In this method, a fuel-rich hydrogen flame provides a low-cost source of energy to drive nanoparticle formation in a reducing environment. The aqueous precursor solution is delivered into the hot combustion product gases within a converging-diverging nozzle. The high-speed gas flow atomizes the precursor and provides exceptionally rapid mixing of the precursor with the hot gases. Here, particles are formed, then immediately quenched and deposited on a glass substrate. The effect of the silver content of the mixed copper-silver films on their electrical conductivity was studied systematically, revealing an abrupt transition from low conductivity to high conductivity between 30 wt.% and 40 wt.% silver.
Copyright 2013 American Association for Aerosol Research</abstract><cop>Colchester</cop><pub>Taylor & Francis Group</pub><doi>10.1080/02786826.2013.796338</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-6826 |
ispartof | Aerosol science and technology, 2013-08, Vol.47 (8), p.858-866 |
issn | 0278-6826 1521-7388 |
language | eng |
recordid | cdi_crossref_primary_10_1080_02786826_2013_796338 |
source | IngentaConnect Free/Open Access Journals; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | Aerodynamics Aerosols Aircraft BIMETALS Chemical reactors Chemistry COATINGS Colloidal state and disperse state Conductivity DEPOSITION ELECTRICAL CONDUCTIVITY ELEVATED TEMPERATURE Exact sciences and technology General and physical chemistry MICROSTRUCTURES Nanoparticles Nanostructure Nanostructured ceramics PARTICLES Precursors Protective coatings Resistivity Silver THIN FILMS |
title | Creating Conductive Copper-Silver Bimetallic Nanostructured Coatings Using a High Temperature Reducing Jet Aerosol Reactor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A57%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Creating%20Conductive%20Copper-Silver%20Bimetallic%20Nanostructured%20Coatings%20Using%20a%20High%20Temperature%20Reducing%20Jet%20Aerosol%20Reactor&rft.jtitle=Aerosol%20science%20and%20technology&rft.au=Sharma,%20Munish%20K.&rft.date=2013-08-01&rft.volume=47&rft.issue=8&rft.spage=858&rft.epage=866&rft.pages=858-866&rft.issn=0278-6826&rft.eissn=1521-7388&rft.coden=ASTYDQ&rft_id=info:doi/10.1080/02786826.2013.796338&rft_dat=%3Cproquest_cross%3E2980481091%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1355552992&rft_id=info:pmid/&rfr_iscdi=true |