Creating Conductive Copper-Silver Bimetallic Nanostructured Coatings Using a High Temperature Reducing Jet Aerosol Reactor

We report production of bimetallic nanostructured copper- silver coatings by in situ deposition and sintering of metal nanoparticles produced as an aerosol. The metal nanoparticles themselves have potential applications in printed electronics, catalysis, antibacterial coatings, and heat transfer flu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aerosol science and technology 2013-08, Vol.47 (8), p.858-866
Hauptverfasser: Sharma, Munish K., Buchner, Raymond D., Scharmach, William J., Papavassiliou, Vasilis, Swihart, Mark T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 866
container_issue 8
container_start_page 858
container_title Aerosol science and technology
container_volume 47
creator Sharma, Munish K.
Buchner, Raymond D.
Scharmach, William J.
Papavassiliou, Vasilis
Swihart, Mark T.
description We report production of bimetallic nanostructured copper- silver coatings by in situ deposition and sintering of metal nanoparticles produced as an aerosol. The metal nanoparticles themselves have potential applications in printed electronics, catalysis, antibacterial coatings, and heat transfer fluids. In many applications, nanoparticles are dispersed in an ink, which is then printed or coated onto a substrate and converted into a nanostructured thin film. Direct deposition from the aerosol allows us to produce nanostructured thin films without first dispersing the particles in a solvent. The high temperature reducing jet process allows formation of these metal nanoparticles from low-cost metal salt precursors in the gas phase. In this method, a fuel-rich hydrogen flame provides a low-cost source of energy to drive nanoparticle formation in a reducing environment. The aqueous precursor solution is delivered into the hot combustion product gases within a converging-diverging nozzle. The high-speed gas flow atomizes the precursor and provides exceptionally rapid mixing of the precursor with the hot gases. Here, particles are formed, then immediately quenched and deposited on a glass substrate. The effect of the silver content of the mixed copper-silver films on their electrical conductivity was studied systematically, revealing an abrupt transition from low conductivity to high conductivity between 30 wt.% and 40 wt.% silver. Copyright 2013 American Association for Aerosol Research
doi_str_mv 10.1080/02786826.2013.796338
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_02786826_2013_796338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2980481091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-28d115c74677d5f30b6db60ee710dcfaf3e311e20c51f01cd2024155bb9908d93</originalsourceid><addsrcrecordid>eNqFkcFu1DAURSNEJYaWP2ARCSGxyfQ9O7GdFSqjQqkqkKBdWx7npbhy4sFOisrX4zBtF12AN7bsc671dIviNcIaQcExMKmEYmLNAPlatoJz9axYYcOwklyp58VqQaqFeVG8TOkGAFAyXBW_N5HM5MbrchPGbraTu6V83O0oVt-dv6VYfnADTcZ7Z8svZgxpihmbI3WZ-6um8iotCaY8c9c_yksasm0WpPxGOXN5O6epPKEYUvD50tgpxKPioDc-0av7_bC4-nh6uTmrLr5--rw5uahsLdRUMdUhNlbWQsqu6TlsRbcVQCQROtubnhNHJAa2wR7QdgxYjU2z3bYtqK7lh8W7fe4uhp8zpUkPLlny3owU5qRRSuBMAOP_R2tkDdR1rTL65gl6E-Y45kE08iYv1rYsU_Wesnn0FKnXu-gGE-80gl660w_d6aU7ve8ua2_vw02yxvfRjNalR5dJwSQKkbn3e86NfYiD-RWi7_Rk7nyIDxL_509_ALK_rNE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1355552992</pqid></control><display><type>article</type><title>Creating Conductive Copper-Silver Bimetallic Nanostructured Coatings Using a High Temperature Reducing Jet Aerosol Reactor</title><source>IngentaConnect Free/Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Sharma, Munish K. ; Buchner, Raymond D. ; Scharmach, William J. ; Papavassiliou, Vasilis ; Swihart, Mark T.</creator><creatorcontrib>Sharma, Munish K. ; Buchner, Raymond D. ; Scharmach, William J. ; Papavassiliou, Vasilis ; Swihart, Mark T.</creatorcontrib><description>We report production of bimetallic nanostructured copper- silver coatings by in situ deposition and sintering of metal nanoparticles produced as an aerosol. The metal nanoparticles themselves have potential applications in printed electronics, catalysis, antibacterial coatings, and heat transfer fluids. In many applications, nanoparticles are dispersed in an ink, which is then printed or coated onto a substrate and converted into a nanostructured thin film. Direct deposition from the aerosol allows us to produce nanostructured thin films without first dispersing the particles in a solvent. The high temperature reducing jet process allows formation of these metal nanoparticles from low-cost metal salt precursors in the gas phase. In this method, a fuel-rich hydrogen flame provides a low-cost source of energy to drive nanoparticle formation in a reducing environment. The aqueous precursor solution is delivered into the hot combustion product gases within a converging-diverging nozzle. The high-speed gas flow atomizes the precursor and provides exceptionally rapid mixing of the precursor with the hot gases. Here, particles are formed, then immediately quenched and deposited on a glass substrate. The effect of the silver content of the mixed copper-silver films on their electrical conductivity was studied systematically, revealing an abrupt transition from low conductivity to high conductivity between 30 wt.% and 40 wt.% silver. Copyright 2013 American Association for Aerosol Research</description><identifier>ISSN: 0278-6826</identifier><identifier>EISSN: 1521-7388</identifier><identifier>DOI: 10.1080/02786826.2013.796338</identifier><identifier>CODEN: ASTYDQ</identifier><language>eng</language><publisher>Colchester: Taylor &amp; Francis Group</publisher><subject>Aerodynamics ; Aerosols ; Aircraft ; BIMETALS ; Chemical reactors ; Chemistry ; COATINGS ; Colloidal state and disperse state ; Conductivity ; DEPOSITION ; ELECTRICAL CONDUCTIVITY ; ELEVATED TEMPERATURE ; Exact sciences and technology ; General and physical chemistry ; MICROSTRUCTURES ; Nanoparticles ; Nanostructure ; Nanostructured ceramics ; PARTICLES ; Precursors ; Protective coatings ; Resistivity ; Silver ; THIN FILMS</subject><ispartof>Aerosol science and technology, 2013-08, Vol.47 (8), p.858-866</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2013</rights><rights>2014 INIST-CNRS</rights><rights>Copyright Taylor &amp; Francis Ltd. 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-28d115c74677d5f30b6db60ee710dcfaf3e311e20c51f01cd2024155bb9908d93</citedby><cites>FETCH-LOGICAL-c468t-28d115c74677d5f30b6db60ee710dcfaf3e311e20c51f01cd2024155bb9908d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27627166$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharma, Munish K.</creatorcontrib><creatorcontrib>Buchner, Raymond D.</creatorcontrib><creatorcontrib>Scharmach, William J.</creatorcontrib><creatorcontrib>Papavassiliou, Vasilis</creatorcontrib><creatorcontrib>Swihart, Mark T.</creatorcontrib><title>Creating Conductive Copper-Silver Bimetallic Nanostructured Coatings Using a High Temperature Reducing Jet Aerosol Reactor</title><title>Aerosol science and technology</title><description>We report production of bimetallic nanostructured copper- silver coatings by in situ deposition and sintering of metal nanoparticles produced as an aerosol. The metal nanoparticles themselves have potential applications in printed electronics, catalysis, antibacterial coatings, and heat transfer fluids. In many applications, nanoparticles are dispersed in an ink, which is then printed or coated onto a substrate and converted into a nanostructured thin film. Direct deposition from the aerosol allows us to produce nanostructured thin films without first dispersing the particles in a solvent. The high temperature reducing jet process allows formation of these metal nanoparticles from low-cost metal salt precursors in the gas phase. In this method, a fuel-rich hydrogen flame provides a low-cost source of energy to drive nanoparticle formation in a reducing environment. The aqueous precursor solution is delivered into the hot combustion product gases within a converging-diverging nozzle. The high-speed gas flow atomizes the precursor and provides exceptionally rapid mixing of the precursor with the hot gases. Here, particles are formed, then immediately quenched and deposited on a glass substrate. The effect of the silver content of the mixed copper-silver films on their electrical conductivity was studied systematically, revealing an abrupt transition from low conductivity to high conductivity between 30 wt.% and 40 wt.% silver. Copyright 2013 American Association for Aerosol Research</description><subject>Aerodynamics</subject><subject>Aerosols</subject><subject>Aircraft</subject><subject>BIMETALS</subject><subject>Chemical reactors</subject><subject>Chemistry</subject><subject>COATINGS</subject><subject>Colloidal state and disperse state</subject><subject>Conductivity</subject><subject>DEPOSITION</subject><subject>ELECTRICAL CONDUCTIVITY</subject><subject>ELEVATED TEMPERATURE</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>MICROSTRUCTURES</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nanostructured ceramics</subject><subject>PARTICLES</subject><subject>Precursors</subject><subject>Protective coatings</subject><subject>Resistivity</subject><subject>Silver</subject><subject>THIN FILMS</subject><issn>0278-6826</issn><issn>1521-7388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAURSNEJYaWP2ARCSGxyfQ9O7GdFSqjQqkqkKBdWx7npbhy4sFOisrX4zBtF12AN7bsc671dIviNcIaQcExMKmEYmLNAPlatoJz9axYYcOwklyp58VqQaqFeVG8TOkGAFAyXBW_N5HM5MbrchPGbraTu6V83O0oVt-dv6VYfnADTcZ7Z8svZgxpihmbI3WZ-6um8iotCaY8c9c_yksasm0WpPxGOXN5O6epPKEYUvD50tgpxKPioDc-0av7_bC4-nh6uTmrLr5--rw5uahsLdRUMdUhNlbWQsqu6TlsRbcVQCQROtubnhNHJAa2wR7QdgxYjU2z3bYtqK7lh8W7fe4uhp8zpUkPLlny3owU5qRRSuBMAOP_R2tkDdR1rTL65gl6E-Y45kE08iYv1rYsU_Wesnn0FKnXu-gGE-80gl660w_d6aU7ve8ua2_vw02yxvfRjNalR5dJwSQKkbn3e86NfYiD-RWi7_Rk7nyIDxL_509_ALK_rNE</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Sharma, Munish K.</creator><creator>Buchner, Raymond D.</creator><creator>Scharmach, William J.</creator><creator>Papavassiliou, Vasilis</creator><creator>Swihart, Mark T.</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7TG</scope><scope>8FD</scope><scope>FR3</scope><scope>KL.</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>H8G</scope><scope>JG9</scope></search><sort><creationdate>20130801</creationdate><title>Creating Conductive Copper-Silver Bimetallic Nanostructured Coatings Using a High Temperature Reducing Jet Aerosol Reactor</title><author>Sharma, Munish K. ; Buchner, Raymond D. ; Scharmach, William J. ; Papavassiliou, Vasilis ; Swihart, Mark T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-28d115c74677d5f30b6db60ee710dcfaf3e311e20c51f01cd2024155bb9908d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aerodynamics</topic><topic>Aerosols</topic><topic>Aircraft</topic><topic>BIMETALS</topic><topic>Chemical reactors</topic><topic>Chemistry</topic><topic>COATINGS</topic><topic>Colloidal state and disperse state</topic><topic>Conductivity</topic><topic>DEPOSITION</topic><topic>ELECTRICAL CONDUCTIVITY</topic><topic>ELEVATED TEMPERATURE</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>MICROSTRUCTURES</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nanostructured ceramics</topic><topic>PARTICLES</topic><topic>Precursors</topic><topic>Protective coatings</topic><topic>Resistivity</topic><topic>Silver</topic><topic>THIN FILMS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Munish K.</creatorcontrib><creatorcontrib>Buchner, Raymond D.</creatorcontrib><creatorcontrib>Scharmach, William J.</creatorcontrib><creatorcontrib>Papavassiliou, Vasilis</creatorcontrib><creatorcontrib>Swihart, Mark T.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><jtitle>Aerosol science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Munish K.</au><au>Buchner, Raymond D.</au><au>Scharmach, William J.</au><au>Papavassiliou, Vasilis</au><au>Swihart, Mark T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Creating Conductive Copper-Silver Bimetallic Nanostructured Coatings Using a High Temperature Reducing Jet Aerosol Reactor</atitle><jtitle>Aerosol science and technology</jtitle><date>2013-08-01</date><risdate>2013</risdate><volume>47</volume><issue>8</issue><spage>858</spage><epage>866</epage><pages>858-866</pages><issn>0278-6826</issn><eissn>1521-7388</eissn><coden>ASTYDQ</coden><abstract>We report production of bimetallic nanostructured copper- silver coatings by in situ deposition and sintering of metal nanoparticles produced as an aerosol. The metal nanoparticles themselves have potential applications in printed electronics, catalysis, antibacterial coatings, and heat transfer fluids. In many applications, nanoparticles are dispersed in an ink, which is then printed or coated onto a substrate and converted into a nanostructured thin film. Direct deposition from the aerosol allows us to produce nanostructured thin films without first dispersing the particles in a solvent. The high temperature reducing jet process allows formation of these metal nanoparticles from low-cost metal salt precursors in the gas phase. In this method, a fuel-rich hydrogen flame provides a low-cost source of energy to drive nanoparticle formation in a reducing environment. The aqueous precursor solution is delivered into the hot combustion product gases within a converging-diverging nozzle. The high-speed gas flow atomizes the precursor and provides exceptionally rapid mixing of the precursor with the hot gases. Here, particles are formed, then immediately quenched and deposited on a glass substrate. The effect of the silver content of the mixed copper-silver films on their electrical conductivity was studied systematically, revealing an abrupt transition from low conductivity to high conductivity between 30 wt.% and 40 wt.% silver. Copyright 2013 American Association for Aerosol Research</abstract><cop>Colchester</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/02786826.2013.796338</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0278-6826
ispartof Aerosol science and technology, 2013-08, Vol.47 (8), p.858-866
issn 0278-6826
1521-7388
language eng
recordid cdi_crossref_primary_10_1080_02786826_2013_796338
source IngentaConnect Free/Open Access Journals; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Aerodynamics
Aerosols
Aircraft
BIMETALS
Chemical reactors
Chemistry
COATINGS
Colloidal state and disperse state
Conductivity
DEPOSITION
ELECTRICAL CONDUCTIVITY
ELEVATED TEMPERATURE
Exact sciences and technology
General and physical chemistry
MICROSTRUCTURES
Nanoparticles
Nanostructure
Nanostructured ceramics
PARTICLES
Precursors
Protective coatings
Resistivity
Silver
THIN FILMS
title Creating Conductive Copper-Silver Bimetallic Nanostructured Coatings Using a High Temperature Reducing Jet Aerosol Reactor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A57%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Creating%20Conductive%20Copper-Silver%20Bimetallic%20Nanostructured%20Coatings%20Using%20a%20High%20Temperature%20Reducing%20Jet%20Aerosol%20Reactor&rft.jtitle=Aerosol%20science%20and%20technology&rft.au=Sharma,%20Munish%20K.&rft.date=2013-08-01&rft.volume=47&rft.issue=8&rft.spage=858&rft.epage=866&rft.pages=858-866&rft.issn=0278-6826&rft.eissn=1521-7388&rft.coden=ASTYDQ&rft_id=info:doi/10.1080/02786826.2013.796338&rft_dat=%3Cproquest_cross%3E2980481091%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1355552992&rft_id=info:pmid/&rfr_iscdi=true