Inequalities of Indonesia's regional digital development and its association with socioeconomic characteristics: a spatial and multivariate analysis

Drawing on multivariate, spatial agglomeration, cluster analysis, and the Ordinary Least Squares (OLS) regression, this paper aims to reveal the spatial inequalities in the digital development of households and individuals at 460 districts/cities in Indonesia and its association with socioeconomic c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information technology for development 2023-07, Vol.29 (2-3), p.299-328
Hauptverfasser: Kartiasih, Fitri, Djalal Nachrowi, Nachrowi, Wisana, I Dewa Gede Karma, Handayani, Dwini
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 328
container_issue 2-3
container_start_page 299
container_title Information technology for development
container_volume 29
creator Kartiasih, Fitri
Djalal Nachrowi, Nachrowi
Wisana, I Dewa Gede Karma
Handayani, Dwini
description Drawing on multivariate, spatial agglomeration, cluster analysis, and the Ordinary Least Squares (OLS) regression, this paper aims to reveal the spatial inequalities in the digital development of households and individuals at 460 districts/cities in Indonesia and its association with socioeconomic characteristics. The results show a significant district digital divide characterized by a decline of regional digital development index (RDDI) values from the west to the east and from core cities to more peripheral ones. Cities with high RDDI values are mainly concentrated in large metropolitan areas in western Indonesia, whereas districts with low values tend to concentrate in rural-mountainous regions, remote areas, and archipelagos in eastern Indonesia. However, the digital divide declined from 2015 to 2019, indicating that Indonesian regions are becoming more digitally convergent. Education, gross regional domestic product (GRDP) per capita, population, and the number of formal workers have a positive and significant impact on RDDI.
doi_str_mv 10.1080/02681102.2022.2110556
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_02681102_2022_2110556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2858504504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-7c995af0f00a08ae6bdc4d4328297b61773106357c07e2f581f19db9df6cb3903</originalsourceid><addsrcrecordid>eNp9kc9qHDEMh01JoZu0j1Aw9JDTJPLMev7klBDSZiHQS3s2Wo-dKMzYG8ubsO_RB66HTa8FI1nm04fhJ8RXBRcKeriEuu2VgvqihrqUctW6_SBWSut1BaqDE7FamGqBPolT5mcA6FqAlfizCe5ljxNlciyjl5swxuCY8Jxlco8UA05ypEfKS3evboq72YUsMYySMktkjpYwF1K-UX6SyxidjSHOZKV9woQ2u0ScyfKVRMm7QhfbYpj3U6ZXTEXgygNOByb-LD56nNh9ee9n4vf3u1-399XDzx-b25uHyjZNn6vODoNGDx4AoUfXbke7HtdN3ddDt21V1zUK2kZ3FjpXe90rr4ZxO4y-tdtmgOZMfDt6dym-7B1n8xz3qXyCTd3rXsO6nELpI2VTZE7Om12iGdPBKDBLAOZfAGYJwLwHUPauj3sUfEwzvsU0jSbjYYrJJwyW2DT_V_wFMSSP2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2858504504</pqid></control><display><type>article</type><title>Inequalities of Indonesia's regional digital development and its association with socioeconomic characteristics: a spatial and multivariate analysis</title><source>Education Source</source><source>EBSCOhost Business Source Complete</source><creator>Kartiasih, Fitri ; Djalal Nachrowi, Nachrowi ; Wisana, I Dewa Gede Karma ; Handayani, Dwini</creator><creatorcontrib>Kartiasih, Fitri ; Djalal Nachrowi, Nachrowi ; Wisana, I Dewa Gede Karma ; Handayani, Dwini</creatorcontrib><description>Drawing on multivariate, spatial agglomeration, cluster analysis, and the Ordinary Least Squares (OLS) regression, this paper aims to reveal the spatial inequalities in the digital development of households and individuals at 460 districts/cities in Indonesia and its association with socioeconomic characteristics. The results show a significant district digital divide characterized by a decline of regional digital development index (RDDI) values from the west to the east and from core cities to more peripheral ones. Cities with high RDDI values are mainly concentrated in large metropolitan areas in western Indonesia, whereas districts with low values tend to concentrate in rural-mountainous regions, remote areas, and archipelagos in eastern Indonesia. However, the digital divide declined from 2015 to 2019, indicating that Indonesian regions are becoming more digitally convergent. Education, gross regional domestic product (GRDP) per capita, population, and the number of formal workers have a positive and significant impact on RDDI.</description><identifier>ISSN: 0268-1102</identifier><identifier>EISSN: 1554-0170</identifier><identifier>DOI: 10.1080/02681102.2022.2110556</identifier><language>eng</language><publisher>Amsterdam: Routledge</publisher><subject>Agglomeration ; Area planning &amp; development ; Cluster analysis ; Convergence ; Digital divide ; Economic development ; Households ; ICT development index ; Indonesia ; Metropolitan areas ; Mountainous areas ; Multivariate analysis ; Regional development ; Rural areas ; Socioeconomic factors ; spatial agglomeration ; Spatial analysis</subject><ispartof>Information technology for development, 2023-07, Vol.29 (2-3), p.299-328</ispartof><rights>2022 Commonwealth Secretariat 2022</rights><rights>2022 Commonwealth Secretariat</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-7c995af0f00a08ae6bdc4d4328297b61773106357c07e2f581f19db9df6cb3903</citedby><cites>FETCH-LOGICAL-c338t-7c995af0f00a08ae6bdc4d4328297b61773106357c07e2f581f19db9df6cb3903</cites><orcidid>0000-0002-1021-9677 ; 0000-0001-7312-4651 ; 0000-0002-6535-9335 ; 0000-0001-8204-475X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kartiasih, Fitri</creatorcontrib><creatorcontrib>Djalal Nachrowi, Nachrowi</creatorcontrib><creatorcontrib>Wisana, I Dewa Gede Karma</creatorcontrib><creatorcontrib>Handayani, Dwini</creatorcontrib><title>Inequalities of Indonesia's regional digital development and its association with socioeconomic characteristics: a spatial and multivariate analysis</title><title>Information technology for development</title><description>Drawing on multivariate, spatial agglomeration, cluster analysis, and the Ordinary Least Squares (OLS) regression, this paper aims to reveal the spatial inequalities in the digital development of households and individuals at 460 districts/cities in Indonesia and its association with socioeconomic characteristics. The results show a significant district digital divide characterized by a decline of regional digital development index (RDDI) values from the west to the east and from core cities to more peripheral ones. Cities with high RDDI values are mainly concentrated in large metropolitan areas in western Indonesia, whereas districts with low values tend to concentrate in rural-mountainous regions, remote areas, and archipelagos in eastern Indonesia. However, the digital divide declined from 2015 to 2019, indicating that Indonesian regions are becoming more digitally convergent. Education, gross regional domestic product (GRDP) per capita, population, and the number of formal workers have a positive and significant impact on RDDI.</description><subject>Agglomeration</subject><subject>Area planning &amp; development</subject><subject>Cluster analysis</subject><subject>Convergence</subject><subject>Digital divide</subject><subject>Economic development</subject><subject>Households</subject><subject>ICT development index</subject><subject>Indonesia</subject><subject>Metropolitan areas</subject><subject>Mountainous areas</subject><subject>Multivariate analysis</subject><subject>Regional development</subject><subject>Rural areas</subject><subject>Socioeconomic factors</subject><subject>spatial agglomeration</subject><subject>Spatial analysis</subject><issn>0268-1102</issn><issn>1554-0170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kc9qHDEMh01JoZu0j1Aw9JDTJPLMev7klBDSZiHQS3s2Wo-dKMzYG8ubsO_RB66HTa8FI1nm04fhJ8RXBRcKeriEuu2VgvqihrqUctW6_SBWSut1BaqDE7FamGqBPolT5mcA6FqAlfizCe5ljxNlciyjl5swxuCY8Jxlco8UA05ypEfKS3evboq72YUsMYySMktkjpYwF1K-UX6SyxidjSHOZKV9woQ2u0ScyfKVRMm7QhfbYpj3U6ZXTEXgygNOByb-LD56nNh9ee9n4vf3u1-399XDzx-b25uHyjZNn6vODoNGDx4AoUfXbke7HtdN3ddDt21V1zUK2kZ3FjpXe90rr4ZxO4y-tdtmgOZMfDt6dym-7B1n8xz3qXyCTd3rXsO6nELpI2VTZE7Om12iGdPBKDBLAOZfAGYJwLwHUPauj3sUfEwzvsU0jSbjYYrJJwyW2DT_V_wFMSSP2A</recordid><startdate>20230703</startdate><enddate>20230703</enddate><creator>Kartiasih, Fitri</creator><creator>Djalal Nachrowi, Nachrowi</creator><creator>Wisana, I Dewa Gede Karma</creator><creator>Handayani, Dwini</creator><general>Routledge</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1021-9677</orcidid><orcidid>https://orcid.org/0000-0001-7312-4651</orcidid><orcidid>https://orcid.org/0000-0002-6535-9335</orcidid><orcidid>https://orcid.org/0000-0001-8204-475X</orcidid></search><sort><creationdate>20230703</creationdate><title>Inequalities of Indonesia's regional digital development and its association with socioeconomic characteristics: a spatial and multivariate analysis</title><author>Kartiasih, Fitri ; Djalal Nachrowi, Nachrowi ; Wisana, I Dewa Gede Karma ; Handayani, Dwini</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-7c995af0f00a08ae6bdc4d4328297b61773106357c07e2f581f19db9df6cb3903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agglomeration</topic><topic>Area planning &amp; development</topic><topic>Cluster analysis</topic><topic>Convergence</topic><topic>Digital divide</topic><topic>Economic development</topic><topic>Households</topic><topic>ICT development index</topic><topic>Indonesia</topic><topic>Metropolitan areas</topic><topic>Mountainous areas</topic><topic>Multivariate analysis</topic><topic>Regional development</topic><topic>Rural areas</topic><topic>Socioeconomic factors</topic><topic>spatial agglomeration</topic><topic>Spatial analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kartiasih, Fitri</creatorcontrib><creatorcontrib>Djalal Nachrowi, Nachrowi</creatorcontrib><creatorcontrib>Wisana, I Dewa Gede Karma</creatorcontrib><creatorcontrib>Handayani, Dwini</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information technology for development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kartiasih, Fitri</au><au>Djalal Nachrowi, Nachrowi</au><au>Wisana, I Dewa Gede Karma</au><au>Handayani, Dwini</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inequalities of Indonesia's regional digital development and its association with socioeconomic characteristics: a spatial and multivariate analysis</atitle><jtitle>Information technology for development</jtitle><date>2023-07-03</date><risdate>2023</risdate><volume>29</volume><issue>2-3</issue><spage>299</spage><epage>328</epage><pages>299-328</pages><issn>0268-1102</issn><eissn>1554-0170</eissn><abstract>Drawing on multivariate, spatial agglomeration, cluster analysis, and the Ordinary Least Squares (OLS) regression, this paper aims to reveal the spatial inequalities in the digital development of households and individuals at 460 districts/cities in Indonesia and its association with socioeconomic characteristics. The results show a significant district digital divide characterized by a decline of regional digital development index (RDDI) values from the west to the east and from core cities to more peripheral ones. Cities with high RDDI values are mainly concentrated in large metropolitan areas in western Indonesia, whereas districts with low values tend to concentrate in rural-mountainous regions, remote areas, and archipelagos in eastern Indonesia. However, the digital divide declined from 2015 to 2019, indicating that Indonesian regions are becoming more digitally convergent. Education, gross regional domestic product (GRDP) per capita, population, and the number of formal workers have a positive and significant impact on RDDI.</abstract><cop>Amsterdam</cop><pub>Routledge</pub><doi>10.1080/02681102.2022.2110556</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-1021-9677</orcidid><orcidid>https://orcid.org/0000-0001-7312-4651</orcidid><orcidid>https://orcid.org/0000-0002-6535-9335</orcidid><orcidid>https://orcid.org/0000-0001-8204-475X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0268-1102
ispartof Information technology for development, 2023-07, Vol.29 (2-3), p.299-328
issn 0268-1102
1554-0170
language eng
recordid cdi_crossref_primary_10_1080_02681102_2022_2110556
source Education Source; EBSCOhost Business Source Complete
subjects Agglomeration
Area planning & development
Cluster analysis
Convergence
Digital divide
Economic development
Households
ICT development index
Indonesia
Metropolitan areas
Mountainous areas
Multivariate analysis
Regional development
Rural areas
Socioeconomic factors
spatial agglomeration
Spatial analysis
title Inequalities of Indonesia's regional digital development and its association with socioeconomic characteristics: a spatial and multivariate analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A00%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inequalities%20of%20Indonesia's%20regional%20digital%20development%20and%20its%20association%20with%20socioeconomic%20characteristics:%20a%20spatial%20and%20multivariate%20analysis&rft.jtitle=Information%20technology%20for%20development&rft.au=Kartiasih,%20Fitri&rft.date=2023-07-03&rft.volume=29&rft.issue=2-3&rft.spage=299&rft.epage=328&rft.pages=299-328&rft.issn=0268-1102&rft.eissn=1554-0170&rft_id=info:doi/10.1080/02681102.2022.2110556&rft_dat=%3Cproquest_cross%3E2858504504%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2858504504&rft_id=info:pmid/&rfr_iscdi=true