Inequalities of Indonesia's regional digital development and its association with socioeconomic characteristics: a spatial and multivariate analysis
Drawing on multivariate, spatial agglomeration, cluster analysis, and the Ordinary Least Squares (OLS) regression, this paper aims to reveal the spatial inequalities in the digital development of households and individuals at 460 districts/cities in Indonesia and its association with socioeconomic c...
Gespeichert in:
Veröffentlicht in: | Information technology for development 2023-07, Vol.29 (2-3), p.299-328 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 328 |
---|---|
container_issue | 2-3 |
container_start_page | 299 |
container_title | Information technology for development |
container_volume | 29 |
creator | Kartiasih, Fitri Djalal Nachrowi, Nachrowi Wisana, I Dewa Gede Karma Handayani, Dwini |
description | Drawing on multivariate, spatial agglomeration, cluster analysis, and the Ordinary Least Squares (OLS) regression, this paper aims to reveal the spatial inequalities in the digital development of households and individuals at 460 districts/cities in Indonesia and its association with socioeconomic characteristics. The results show a significant district digital divide characterized by a decline of regional digital development index (RDDI) values from the west to the east and from core cities to more peripheral ones. Cities with high RDDI values are mainly concentrated in large metropolitan areas in western Indonesia, whereas districts with low values tend to concentrate in rural-mountainous regions, remote areas, and archipelagos in eastern Indonesia. However, the digital divide declined from 2015 to 2019, indicating that Indonesian regions are becoming more digitally convergent. Education, gross regional domestic product (GRDP) per capita, population, and the number of formal workers have a positive and significant impact on RDDI. |
doi_str_mv | 10.1080/02681102.2022.2110556 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_02681102_2022_2110556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2858504504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-7c995af0f00a08ae6bdc4d4328297b61773106357c07e2f581f19db9df6cb3903</originalsourceid><addsrcrecordid>eNp9kc9qHDEMh01JoZu0j1Aw9JDTJPLMev7klBDSZiHQS3s2Wo-dKMzYG8ubsO_RB66HTa8FI1nm04fhJ8RXBRcKeriEuu2VgvqihrqUctW6_SBWSut1BaqDE7FamGqBPolT5mcA6FqAlfizCe5ljxNlciyjl5swxuCY8Jxlco8UA05ypEfKS3evboq72YUsMYySMktkjpYwF1K-UX6SyxidjSHOZKV9woQ2u0ScyfKVRMm7QhfbYpj3U6ZXTEXgygNOByb-LD56nNh9ee9n4vf3u1-399XDzx-b25uHyjZNn6vODoNGDx4AoUfXbke7HtdN3ddDt21V1zUK2kZ3FjpXe90rr4ZxO4y-tdtmgOZMfDt6dym-7B1n8xz3qXyCTd3rXsO6nELpI2VTZE7Om12iGdPBKDBLAOZfAGYJwLwHUPauj3sUfEwzvsU0jSbjYYrJJwyW2DT_V_wFMSSP2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2858504504</pqid></control><display><type>article</type><title>Inequalities of Indonesia's regional digital development and its association with socioeconomic characteristics: a spatial and multivariate analysis</title><source>Education Source</source><source>EBSCOhost Business Source Complete</source><creator>Kartiasih, Fitri ; Djalal Nachrowi, Nachrowi ; Wisana, I Dewa Gede Karma ; Handayani, Dwini</creator><creatorcontrib>Kartiasih, Fitri ; Djalal Nachrowi, Nachrowi ; Wisana, I Dewa Gede Karma ; Handayani, Dwini</creatorcontrib><description>Drawing on multivariate, spatial agglomeration, cluster analysis, and the Ordinary Least Squares (OLS) regression, this paper aims to reveal the spatial inequalities in the digital development of households and individuals at 460 districts/cities in Indonesia and its association with socioeconomic characteristics. The results show a significant district digital divide characterized by a decline of regional digital development index (RDDI) values from the west to the east and from core cities to more peripheral ones. Cities with high RDDI values are mainly concentrated in large metropolitan areas in western Indonesia, whereas districts with low values tend to concentrate in rural-mountainous regions, remote areas, and archipelagos in eastern Indonesia. However, the digital divide declined from 2015 to 2019, indicating that Indonesian regions are becoming more digitally convergent. Education, gross regional domestic product (GRDP) per capita, population, and the number of formal workers have a positive and significant impact on RDDI.</description><identifier>ISSN: 0268-1102</identifier><identifier>EISSN: 1554-0170</identifier><identifier>DOI: 10.1080/02681102.2022.2110556</identifier><language>eng</language><publisher>Amsterdam: Routledge</publisher><subject>Agglomeration ; Area planning & development ; Cluster analysis ; Convergence ; Digital divide ; Economic development ; Households ; ICT development index ; Indonesia ; Metropolitan areas ; Mountainous areas ; Multivariate analysis ; Regional development ; Rural areas ; Socioeconomic factors ; spatial agglomeration ; Spatial analysis</subject><ispartof>Information technology for development, 2023-07, Vol.29 (2-3), p.299-328</ispartof><rights>2022 Commonwealth Secretariat 2022</rights><rights>2022 Commonwealth Secretariat</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-7c995af0f00a08ae6bdc4d4328297b61773106357c07e2f581f19db9df6cb3903</citedby><cites>FETCH-LOGICAL-c338t-7c995af0f00a08ae6bdc4d4328297b61773106357c07e2f581f19db9df6cb3903</cites><orcidid>0000-0002-1021-9677 ; 0000-0001-7312-4651 ; 0000-0002-6535-9335 ; 0000-0001-8204-475X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kartiasih, Fitri</creatorcontrib><creatorcontrib>Djalal Nachrowi, Nachrowi</creatorcontrib><creatorcontrib>Wisana, I Dewa Gede Karma</creatorcontrib><creatorcontrib>Handayani, Dwini</creatorcontrib><title>Inequalities of Indonesia's regional digital development and its association with socioeconomic characteristics: a spatial and multivariate analysis</title><title>Information technology for development</title><description>Drawing on multivariate, spatial agglomeration, cluster analysis, and the Ordinary Least Squares (OLS) regression, this paper aims to reveal the spatial inequalities in the digital development of households and individuals at 460 districts/cities in Indonesia and its association with socioeconomic characteristics. The results show a significant district digital divide characterized by a decline of regional digital development index (RDDI) values from the west to the east and from core cities to more peripheral ones. Cities with high RDDI values are mainly concentrated in large metropolitan areas in western Indonesia, whereas districts with low values tend to concentrate in rural-mountainous regions, remote areas, and archipelagos in eastern Indonesia. However, the digital divide declined from 2015 to 2019, indicating that Indonesian regions are becoming more digitally convergent. Education, gross regional domestic product (GRDP) per capita, population, and the number of formal workers have a positive and significant impact on RDDI.</description><subject>Agglomeration</subject><subject>Area planning & development</subject><subject>Cluster analysis</subject><subject>Convergence</subject><subject>Digital divide</subject><subject>Economic development</subject><subject>Households</subject><subject>ICT development index</subject><subject>Indonesia</subject><subject>Metropolitan areas</subject><subject>Mountainous areas</subject><subject>Multivariate analysis</subject><subject>Regional development</subject><subject>Rural areas</subject><subject>Socioeconomic factors</subject><subject>spatial agglomeration</subject><subject>Spatial analysis</subject><issn>0268-1102</issn><issn>1554-0170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kc9qHDEMh01JoZu0j1Aw9JDTJPLMev7klBDSZiHQS3s2Wo-dKMzYG8ubsO_RB66HTa8FI1nm04fhJ8RXBRcKeriEuu2VgvqihrqUctW6_SBWSut1BaqDE7FamGqBPolT5mcA6FqAlfizCe5ljxNlciyjl5swxuCY8Jxlco8UA05ypEfKS3evboq72YUsMYySMktkjpYwF1K-UX6SyxidjSHOZKV9woQ2u0ScyfKVRMm7QhfbYpj3U6ZXTEXgygNOByb-LD56nNh9ee9n4vf3u1-399XDzx-b25uHyjZNn6vODoNGDx4AoUfXbke7HtdN3ddDt21V1zUK2kZ3FjpXe90rr4ZxO4y-tdtmgOZMfDt6dym-7B1n8xz3qXyCTd3rXsO6nELpI2VTZE7Om12iGdPBKDBLAOZfAGYJwLwHUPauj3sUfEwzvsU0jSbjYYrJJwyW2DT_V_wFMSSP2A</recordid><startdate>20230703</startdate><enddate>20230703</enddate><creator>Kartiasih, Fitri</creator><creator>Djalal Nachrowi, Nachrowi</creator><creator>Wisana, I Dewa Gede Karma</creator><creator>Handayani, Dwini</creator><general>Routledge</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1021-9677</orcidid><orcidid>https://orcid.org/0000-0001-7312-4651</orcidid><orcidid>https://orcid.org/0000-0002-6535-9335</orcidid><orcidid>https://orcid.org/0000-0001-8204-475X</orcidid></search><sort><creationdate>20230703</creationdate><title>Inequalities of Indonesia's regional digital development and its association with socioeconomic characteristics: a spatial and multivariate analysis</title><author>Kartiasih, Fitri ; Djalal Nachrowi, Nachrowi ; Wisana, I Dewa Gede Karma ; Handayani, Dwini</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-7c995af0f00a08ae6bdc4d4328297b61773106357c07e2f581f19db9df6cb3903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agglomeration</topic><topic>Area planning & development</topic><topic>Cluster analysis</topic><topic>Convergence</topic><topic>Digital divide</topic><topic>Economic development</topic><topic>Households</topic><topic>ICT development index</topic><topic>Indonesia</topic><topic>Metropolitan areas</topic><topic>Mountainous areas</topic><topic>Multivariate analysis</topic><topic>Regional development</topic><topic>Rural areas</topic><topic>Socioeconomic factors</topic><topic>spatial agglomeration</topic><topic>Spatial analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kartiasih, Fitri</creatorcontrib><creatorcontrib>Djalal Nachrowi, Nachrowi</creatorcontrib><creatorcontrib>Wisana, I Dewa Gede Karma</creatorcontrib><creatorcontrib>Handayani, Dwini</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information technology for development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kartiasih, Fitri</au><au>Djalal Nachrowi, Nachrowi</au><au>Wisana, I Dewa Gede Karma</au><au>Handayani, Dwini</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inequalities of Indonesia's regional digital development and its association with socioeconomic characteristics: a spatial and multivariate analysis</atitle><jtitle>Information technology for development</jtitle><date>2023-07-03</date><risdate>2023</risdate><volume>29</volume><issue>2-3</issue><spage>299</spage><epage>328</epage><pages>299-328</pages><issn>0268-1102</issn><eissn>1554-0170</eissn><abstract>Drawing on multivariate, spatial agglomeration, cluster analysis, and the Ordinary Least Squares (OLS) regression, this paper aims to reveal the spatial inequalities in the digital development of households and individuals at 460 districts/cities in Indonesia and its association with socioeconomic characteristics. The results show a significant district digital divide characterized by a decline of regional digital development index (RDDI) values from the west to the east and from core cities to more peripheral ones. Cities with high RDDI values are mainly concentrated in large metropolitan areas in western Indonesia, whereas districts with low values tend to concentrate in rural-mountainous regions, remote areas, and archipelagos in eastern Indonesia. However, the digital divide declined from 2015 to 2019, indicating that Indonesian regions are becoming more digitally convergent. Education, gross regional domestic product (GRDP) per capita, population, and the number of formal workers have a positive and significant impact on RDDI.</abstract><cop>Amsterdam</cop><pub>Routledge</pub><doi>10.1080/02681102.2022.2110556</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-1021-9677</orcidid><orcidid>https://orcid.org/0000-0001-7312-4651</orcidid><orcidid>https://orcid.org/0000-0002-6535-9335</orcidid><orcidid>https://orcid.org/0000-0001-8204-475X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-1102 |
ispartof | Information technology for development, 2023-07, Vol.29 (2-3), p.299-328 |
issn | 0268-1102 1554-0170 |
language | eng |
recordid | cdi_crossref_primary_10_1080_02681102_2022_2110556 |
source | Education Source; EBSCOhost Business Source Complete |
subjects | Agglomeration Area planning & development Cluster analysis Convergence Digital divide Economic development Households ICT development index Indonesia Metropolitan areas Mountainous areas Multivariate analysis Regional development Rural areas Socioeconomic factors spatial agglomeration Spatial analysis |
title | Inequalities of Indonesia's regional digital development and its association with socioeconomic characteristics: a spatial and multivariate analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A00%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inequalities%20of%20Indonesia's%20regional%20digital%20development%20and%20its%20association%20with%20socioeconomic%20characteristics:%20a%20spatial%20and%20multivariate%20analysis&rft.jtitle=Information%20technology%20for%20development&rft.au=Kartiasih,%20Fitri&rft.date=2023-07-03&rft.volume=29&rft.issue=2-3&rft.spage=299&rft.epage=328&rft.pages=299-328&rft.issn=0268-1102&rft.eissn=1554-0170&rft_id=info:doi/10.1080/02681102.2022.2110556&rft_dat=%3Cproquest_cross%3E2858504504%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2858504504&rft_id=info:pmid/&rfr_iscdi=true |