A Bayesian shared parameter model for joint modeling of longitudinal continuous and binary outcomes

Joint modeling of associated mixed biomarkers in longitudinal studies leads to a better clinical decision by improving the efficiency of parameter estimates. In many clinical studies, the observed time for two biomarkers may not be equivalent and one of the longitudinal responses may have recorded i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics 2022-02, Vol.49 (3), p.638-655
Hauptverfasser: Baghfalaki, T., Ganjali, M., Kabir, A., Pazouki, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 655
container_issue 3
container_start_page 638
container_title Journal of applied statistics
container_volume 49
creator Baghfalaki, T.
Ganjali, M.
Kabir, A.
Pazouki, A.
description Joint modeling of associated mixed biomarkers in longitudinal studies leads to a better clinical decision by improving the efficiency of parameter estimates. In many clinical studies, the observed time for two biomarkers may not be equivalent and one of the longitudinal responses may have recorded in a longer time than the other one. In addition, the response variables may have different missing patterns. In this paper, we propose a new joint model of associated continuous and binary responses by accounting different missing patterns for two longitudinal outcomes. A conditional model for joint modeling of the two responses is used and two shared random effects models are considered for intermittent missingness of two responses. A Bayesian approach using Markov Chain Monte Carlo (MCMC) is adopted for parameter estimation and model implementation. The validation and performance of the proposed model are investigated using some simulation studies. The proposed model is also applied for analyzing a real data set of bariatric surgery.
doi_str_mv 10.1080/02664763.2020.1822303
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_02664763_2020_1822303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2677575229</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-9615a98268e12b8fcdd668cb76256563c5b7019d08d1b3a4df2da983936accef3</originalsourceid><addsrcrecordid>eNp9kU1vFDEMhiNE1W5LfwIoRy5T8rHJZC6IUlGoVIkLnCNPktmmyiRLkinaf09Wu63gwsmy8_i14xeht5RcUaLIB8KkXPeSXzHCWkkxxgl_hVaUS9IRwdlrtNoz3R46Q-elPBJCFBX8FJ1x0RPZS7VC5hp_hp0rHiIuD5CdxVvIMLvqMp6TdQFPKePH5GM95D5ucJpwSHHj62J9hIBNitXHJS0FQ7R4bMW8w2mpJs2uvEEnE4TiLo_xAv28_fLj5lt3__3r3c31fWfWVNZukFTAoJhUjrJRTcZaKZUZe8mEFJIbMfaEDpYoS0cOazsx23g-cAnGuIlfoI8H3e0yzs4aF2uGoLfZz20dncDrf1-if9Cb9KQHsm5XFE3g_VEgp1-LK1XPvhgXAkTX_qaZ7HvRC8aGhooDanIqJbvpZQwlem-QfjZI7w3SR4Na37u_d3zpenakAZ8OgI_t8DP8TjlYXWEXUp4yROOL5v-f8Qdj96Ig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2677575229</pqid></control><display><type>article</type><title>A Bayesian shared parameter model for joint modeling of longitudinal continuous and binary outcomes</title><source>PubMed Central Free</source><source>Business Source Complete</source><creator>Baghfalaki, T. ; Ganjali, M. ; Kabir, A. ; Pazouki, A.</creator><creatorcontrib>Baghfalaki, T. ; Ganjali, M. ; Kabir, A. ; Pazouki, A.</creatorcontrib><description>Joint modeling of associated mixed biomarkers in longitudinal studies leads to a better clinical decision by improving the efficiency of parameter estimates. In many clinical studies, the observed time for two biomarkers may not be equivalent and one of the longitudinal responses may have recorded in a longer time than the other one. In addition, the response variables may have different missing patterns. In this paper, we propose a new joint model of associated continuous and binary responses by accounting different missing patterns for two longitudinal outcomes. A conditional model for joint modeling of the two responses is used and two shared random effects models are considered for intermittent missingness of two responses. A Bayesian approach using Markov Chain Monte Carlo (MCMC) is adopted for parameter estimation and model implementation. The validation and performance of the proposed model are investigated using some simulation studies. The proposed model is also applied for analyzing a real data set of bariatric surgery.</description><identifier>ISSN: 0266-4763</identifier><identifier>EISSN: 1360-0532</identifier><identifier>DOI: 10.1080/02664763.2020.1822303</identifier><identifier>PMID: 35706768</identifier><language>eng</language><publisher>England: Taylor &amp; Francis</publisher><subject>Conditional model ; intermittent missingness ; joint modeling ; longitudinal data ; MCMC methods ; mixed-effects model</subject><ispartof>Journal of applied statistics, 2022-02, Vol.49 (3), p.638-655</ispartof><rights>2020 Informa UK Limited, trading as Taylor &amp; Francis Group 2020</rights><rights>2020 Informa UK Limited, trading as Taylor &amp; Francis Group.</rights><rights>2020 Informa UK Limited, trading as Taylor &amp; Francis Group 2020 Taylor &amp; Francis</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c416t-9615a98268e12b8fcdd668cb76256563c5b7019d08d1b3a4df2da983936accef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9042025/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9042025/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35706768$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baghfalaki, T.</creatorcontrib><creatorcontrib>Ganjali, M.</creatorcontrib><creatorcontrib>Kabir, A.</creatorcontrib><creatorcontrib>Pazouki, A.</creatorcontrib><title>A Bayesian shared parameter model for joint modeling of longitudinal continuous and binary outcomes</title><title>Journal of applied statistics</title><addtitle>J Appl Stat</addtitle><description>Joint modeling of associated mixed biomarkers in longitudinal studies leads to a better clinical decision by improving the efficiency of parameter estimates. In many clinical studies, the observed time for two biomarkers may not be equivalent and one of the longitudinal responses may have recorded in a longer time than the other one. In addition, the response variables may have different missing patterns. In this paper, we propose a new joint model of associated continuous and binary responses by accounting different missing patterns for two longitudinal outcomes. A conditional model for joint modeling of the two responses is used and two shared random effects models are considered for intermittent missingness of two responses. A Bayesian approach using Markov Chain Monte Carlo (MCMC) is adopted for parameter estimation and model implementation. The validation and performance of the proposed model are investigated using some simulation studies. The proposed model is also applied for analyzing a real data set of bariatric surgery.</description><subject>Conditional model</subject><subject>intermittent missingness</subject><subject>joint modeling</subject><subject>longitudinal data</subject><subject>MCMC methods</subject><subject>mixed-effects model</subject><issn>0266-4763</issn><issn>1360-0532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kU1vFDEMhiNE1W5LfwIoRy5T8rHJZC6IUlGoVIkLnCNPktmmyiRLkinaf09Wu63gwsmy8_i14xeht5RcUaLIB8KkXPeSXzHCWkkxxgl_hVaUS9IRwdlrtNoz3R46Q-elPBJCFBX8FJ1x0RPZS7VC5hp_hp0rHiIuD5CdxVvIMLvqMp6TdQFPKePH5GM95D5ucJpwSHHj62J9hIBNitXHJS0FQ7R4bMW8w2mpJs2uvEEnE4TiLo_xAv28_fLj5lt3__3r3c31fWfWVNZukFTAoJhUjrJRTcZaKZUZe8mEFJIbMfaEDpYoS0cOazsx23g-cAnGuIlfoI8H3e0yzs4aF2uGoLfZz20dncDrf1-if9Cb9KQHsm5XFE3g_VEgp1-LK1XPvhgXAkTX_qaZ7HvRC8aGhooDanIqJbvpZQwlem-QfjZI7w3SR4Na37u_d3zpenakAZ8OgI_t8DP8TjlYXWEXUp4yROOL5v-f8Qdj96Ig</recordid><startdate>20220217</startdate><enddate>20220217</enddate><creator>Baghfalaki, T.</creator><creator>Ganjali, M.</creator><creator>Kabir, A.</creator><creator>Pazouki, A.</creator><general>Taylor &amp; Francis</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20220217</creationdate><title>A Bayesian shared parameter model for joint modeling of longitudinal continuous and binary outcomes</title><author>Baghfalaki, T. ; Ganjali, M. ; Kabir, A. ; Pazouki, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-9615a98268e12b8fcdd668cb76256563c5b7019d08d1b3a4df2da983936accef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Conditional model</topic><topic>intermittent missingness</topic><topic>joint modeling</topic><topic>longitudinal data</topic><topic>MCMC methods</topic><topic>mixed-effects model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baghfalaki, T.</creatorcontrib><creatorcontrib>Ganjali, M.</creatorcontrib><creatorcontrib>Kabir, A.</creatorcontrib><creatorcontrib>Pazouki, A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of applied statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baghfalaki, T.</au><au>Ganjali, M.</au><au>Kabir, A.</au><au>Pazouki, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bayesian shared parameter model for joint modeling of longitudinal continuous and binary outcomes</atitle><jtitle>Journal of applied statistics</jtitle><addtitle>J Appl Stat</addtitle><date>2022-02-17</date><risdate>2022</risdate><volume>49</volume><issue>3</issue><spage>638</spage><epage>655</epage><pages>638-655</pages><issn>0266-4763</issn><eissn>1360-0532</eissn><abstract>Joint modeling of associated mixed biomarkers in longitudinal studies leads to a better clinical decision by improving the efficiency of parameter estimates. In many clinical studies, the observed time for two biomarkers may not be equivalent and one of the longitudinal responses may have recorded in a longer time than the other one. In addition, the response variables may have different missing patterns. In this paper, we propose a new joint model of associated continuous and binary responses by accounting different missing patterns for two longitudinal outcomes. A conditional model for joint modeling of the two responses is used and two shared random effects models are considered for intermittent missingness of two responses. A Bayesian approach using Markov Chain Monte Carlo (MCMC) is adopted for parameter estimation and model implementation. The validation and performance of the proposed model are investigated using some simulation studies. The proposed model is also applied for analyzing a real data set of bariatric surgery.</abstract><cop>England</cop><pub>Taylor &amp; Francis</pub><pmid>35706768</pmid><doi>10.1080/02664763.2020.1822303</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0266-4763
ispartof Journal of applied statistics, 2022-02, Vol.49 (3), p.638-655
issn 0266-4763
1360-0532
language eng
recordid cdi_crossref_primary_10_1080_02664763_2020_1822303
source PubMed Central Free; Business Source Complete
subjects Conditional model
intermittent missingness
joint modeling
longitudinal data
MCMC methods
mixed-effects model
title A Bayesian shared parameter model for joint modeling of longitudinal continuous and binary outcomes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A22%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bayesian%20shared%20parameter%20model%20for%20joint%20modeling%20of%20longitudinal%20continuous%20and%20binary%20outcomes&rft.jtitle=Journal%20of%20applied%20statistics&rft.au=Baghfalaki,%20T.&rft.date=2022-02-17&rft.volume=49&rft.issue=3&rft.spage=638&rft.epage=655&rft.pages=638-655&rft.issn=0266-4763&rft.eissn=1360-0532&rft_id=info:doi/10.1080/02664763.2020.1822303&rft_dat=%3Cproquest_cross%3E2677575229%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2677575229&rft_id=info:pmid/35706768&rfr_iscdi=true