MARS as an alternative approach of Gaussian graphical model for biochemical networks

The Gaussian graphical model (GGM) is one of the well-known modelling approaches to describe biological networks under the steady-state condition via the precision matrix of data. In literature there are different methods to infer model parameters based on GGM. The neighbourhood selection with the l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics 2017-12, Vol.44 (16), p.2858-2876
Hauptverfasser: Ayyıldız, Ezgi, Ağraz, Melih, Purutçuoğlu, Vilda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2876
container_issue 16
container_start_page 2858
container_title Journal of applied statistics
container_volume 44
creator Ayyıldız, Ezgi
Ağraz, Melih
Purutçuoğlu, Vilda
description The Gaussian graphical model (GGM) is one of the well-known modelling approaches to describe biological networks under the steady-state condition via the precision matrix of data. In literature there are different methods to infer model parameters based on GGM. The neighbourhood selection with the lasso regression and the graphical lasso method are the most common techniques among these alternative estimation methods. But they can be computationally demanding when the system's dimension increases. Here, we suggest a non-parametric statistical approach, called the multivariate adaptive regression splines (MARS) as an alternative of GGM. To compare the performance of both models, we evaluate the findings of normal and non-normal data via the specificity, precision, F-measures and their computational costs. From the outputs, we see that MARS performs well, resulting in, a plausible alternative approach with respect to GGM in the construction of complex biological systems.
doi_str_mv 10.1080/02664763.2016.1266465
format Article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_02664763_2016_1266465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_02664763_2016_1266465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-c4853a70305393889ff744af769b42d988eab9f3f77baacf842a54320894710f3</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYMoOKc_Qcgf6Lxp0jZ9cwzdhImg8zncZomLtk1JqrJ_b-vmq0-XeznncO5HyDWDGQMJN5DmuShyPkuB5TM2bnl2QiaM55BAxtNTMhk1ySg6JxcxvgOAZBmfkM3j_PmFYqTYUqx7E1rs3Zeh2HXBo95Rb-kSP2N0g-AtYLdzGmva-K2pqfWBVs7rnWl-r63pv334iJfkzGIdzdVxTsnr_d1msUrWT8uHxXydaM6gT7SQGccC-NCx5FKW1hZCoC3yshLptpTSYFVabouiQtRWihQzwVOQpSgYWD4l2SFXBx9jMFZ1wTUY9oqBGtGoPzRqRKOOaAbf7cHn2uGFBofS9Vb1uK99sAFb7aLi_0f8ABEoaps</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>MARS as an alternative approach of Gaussian graphical model for biochemical networks</title><source>EBSCOhost Business Source Complete</source><creator>Ayyıldız, Ezgi ; Ağraz, Melih ; Purutçuoğlu, Vilda</creator><creatorcontrib>Ayyıldız, Ezgi ; Ağraz, Melih ; Purutçuoğlu, Vilda</creatorcontrib><description>The Gaussian graphical model (GGM) is one of the well-known modelling approaches to describe biological networks under the steady-state condition via the precision matrix of data. In literature there are different methods to infer model parameters based on GGM. The neighbourhood selection with the lasso regression and the graphical lasso method are the most common techniques among these alternative estimation methods. But they can be computationally demanding when the system's dimension increases. Here, we suggest a non-parametric statistical approach, called the multivariate adaptive regression splines (MARS) as an alternative of GGM. To compare the performance of both models, we evaluate the findings of normal and non-normal data via the specificity, precision, F-measures and their computational costs. From the outputs, we see that MARS performs well, resulting in, a plausible alternative approach with respect to GGM in the construction of complex biological systems.</description><identifier>ISSN: 0266-4763</identifier><identifier>EISSN: 1360-0532</identifier><identifier>DOI: 10.1080/02664763.2016.1266465</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><subject>Deterministic inference ; Monte Carlo simulations ; multivariate adaptive regression splines ; optimal model selection ; systems biology</subject><ispartof>Journal of applied statistics, 2017-12, Vol.44 (16), p.2858-2876</ispartof><rights>2016 Informa UK Limited, trading as Taylor &amp; Francis Group 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-c4853a70305393889ff744af769b42d988eab9f3f77baacf842a54320894710f3</citedby><cites>FETCH-LOGICAL-c310t-c4853a70305393889ff744af769b42d988eab9f3f77baacf842a54320894710f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ayyıldız, Ezgi</creatorcontrib><creatorcontrib>Ağraz, Melih</creatorcontrib><creatorcontrib>Purutçuoğlu, Vilda</creatorcontrib><title>MARS as an alternative approach of Gaussian graphical model for biochemical networks</title><title>Journal of applied statistics</title><description>The Gaussian graphical model (GGM) is one of the well-known modelling approaches to describe biological networks under the steady-state condition via the precision matrix of data. In literature there are different methods to infer model parameters based on GGM. The neighbourhood selection with the lasso regression and the graphical lasso method are the most common techniques among these alternative estimation methods. But they can be computationally demanding when the system's dimension increases. Here, we suggest a non-parametric statistical approach, called the multivariate adaptive regression splines (MARS) as an alternative of GGM. To compare the performance of both models, we evaluate the findings of normal and non-normal data via the specificity, precision, F-measures and their computational costs. From the outputs, we see that MARS performs well, resulting in, a plausible alternative approach with respect to GGM in the construction of complex biological systems.</description><subject>Deterministic inference</subject><subject>Monte Carlo simulations</subject><subject>multivariate adaptive regression splines</subject><subject>optimal model selection</subject><subject>systems biology</subject><issn>0266-4763</issn><issn>1360-0532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kFFLwzAUhYMoOKc_Qcgf6Lxp0jZ9cwzdhImg8zncZomLtk1JqrJ_b-vmq0-XeznncO5HyDWDGQMJN5DmuShyPkuB5TM2bnl2QiaM55BAxtNTMhk1ySg6JxcxvgOAZBmfkM3j_PmFYqTYUqx7E1rs3Zeh2HXBo95Rb-kSP2N0g-AtYLdzGmva-K2pqfWBVs7rnWl-r63pv334iJfkzGIdzdVxTsnr_d1msUrWT8uHxXydaM6gT7SQGccC-NCx5FKW1hZCoC3yshLptpTSYFVabouiQtRWihQzwVOQpSgYWD4l2SFXBx9jMFZ1wTUY9oqBGtGoPzRqRKOOaAbf7cHn2uGFBofS9Vb1uK99sAFb7aLi_0f8ABEoaps</recordid><startdate>20171210</startdate><enddate>20171210</enddate><creator>Ayyıldız, Ezgi</creator><creator>Ağraz, Melih</creator><creator>Purutçuoğlu, Vilda</creator><general>Taylor &amp; Francis</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171210</creationdate><title>MARS as an alternative approach of Gaussian graphical model for biochemical networks</title><author>Ayyıldız, Ezgi ; Ağraz, Melih ; Purutçuoğlu, Vilda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-c4853a70305393889ff744af769b42d988eab9f3f77baacf842a54320894710f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Deterministic inference</topic><topic>Monte Carlo simulations</topic><topic>multivariate adaptive regression splines</topic><topic>optimal model selection</topic><topic>systems biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ayyıldız, Ezgi</creatorcontrib><creatorcontrib>Ağraz, Melih</creatorcontrib><creatorcontrib>Purutçuoğlu, Vilda</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ayyıldız, Ezgi</au><au>Ağraz, Melih</au><au>Purutçuoğlu, Vilda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MARS as an alternative approach of Gaussian graphical model for biochemical networks</atitle><jtitle>Journal of applied statistics</jtitle><date>2017-12-10</date><risdate>2017</risdate><volume>44</volume><issue>16</issue><spage>2858</spage><epage>2876</epage><pages>2858-2876</pages><issn>0266-4763</issn><eissn>1360-0532</eissn><abstract>The Gaussian graphical model (GGM) is one of the well-known modelling approaches to describe biological networks under the steady-state condition via the precision matrix of data. In literature there are different methods to infer model parameters based on GGM. The neighbourhood selection with the lasso regression and the graphical lasso method are the most common techniques among these alternative estimation methods. But they can be computationally demanding when the system's dimension increases. Here, we suggest a non-parametric statistical approach, called the multivariate adaptive regression splines (MARS) as an alternative of GGM. To compare the performance of both models, we evaluate the findings of normal and non-normal data via the specificity, precision, F-measures and their computational costs. From the outputs, we see that MARS performs well, resulting in, a plausible alternative approach with respect to GGM in the construction of complex biological systems.</abstract><pub>Taylor &amp; Francis</pub><doi>10.1080/02664763.2016.1266465</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0266-4763
ispartof Journal of applied statistics, 2017-12, Vol.44 (16), p.2858-2876
issn 0266-4763
1360-0532
language eng
recordid cdi_crossref_primary_10_1080_02664763_2016_1266465
source EBSCOhost Business Source Complete
subjects Deterministic inference
Monte Carlo simulations
multivariate adaptive regression splines
optimal model selection
systems biology
title MARS as an alternative approach of Gaussian graphical model for biochemical networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T06%3A14%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MARS%20as%20an%20alternative%20approach%20of%20Gaussian%20graphical%20model%20for%20biochemical%20networks&rft.jtitle=Journal%20of%20applied%20statistics&rft.au=Ayy%C4%B1ld%C4%B1z,%20Ezgi&rft.date=2017-12-10&rft.volume=44&rft.issue=16&rft.spage=2858&rft.epage=2876&rft.pages=2858-2876&rft.issn=0266-4763&rft.eissn=1360-0532&rft_id=info:doi/10.1080/02664763.2016.1266465&rft_dat=%3Ccrossref_infor%3E10_1080_02664763_2016_1266465%3C/crossref_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true