MARS as an alternative approach of Gaussian graphical model for biochemical networks
The Gaussian graphical model (GGM) is one of the well-known modelling approaches to describe biological networks under the steady-state condition via the precision matrix of data. In literature there are different methods to infer model parameters based on GGM. The neighbourhood selection with the l...
Gespeichert in:
Veröffentlicht in: | Journal of applied statistics 2017-12, Vol.44 (16), p.2858-2876 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2876 |
---|---|
container_issue | 16 |
container_start_page | 2858 |
container_title | Journal of applied statistics |
container_volume | 44 |
creator | Ayyıldız, Ezgi Ağraz, Melih Purutçuoğlu, Vilda |
description | The Gaussian graphical model (GGM) is one of the well-known modelling approaches to describe biological networks under the steady-state condition via the precision matrix of data. In literature there are different methods to infer model parameters based on GGM. The neighbourhood selection with the lasso regression and the graphical lasso method are the most common techniques among these alternative estimation methods. But they can be computationally demanding when the system's dimension increases. Here, we suggest a non-parametric statistical approach, called the multivariate adaptive regression splines (MARS) as an alternative of GGM. To compare the performance of both models, we evaluate the findings of normal and non-normal data via the specificity, precision, F-measures and their computational costs. From the outputs, we see that MARS performs well, resulting in, a plausible alternative approach with respect to GGM in the construction of complex biological systems. |
doi_str_mv | 10.1080/02664763.2016.1266465 |
format | Article |
fullrecord | <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_02664763_2016_1266465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_02664763_2016_1266465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-c4853a70305393889ff744af769b42d988eab9f3f77baacf842a54320894710f3</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYMoOKc_Qcgf6Lxp0jZ9cwzdhImg8zncZomLtk1JqrJ_b-vmq0-XeznncO5HyDWDGQMJN5DmuShyPkuB5TM2bnl2QiaM55BAxtNTMhk1ySg6JxcxvgOAZBmfkM3j_PmFYqTYUqx7E1rs3Zeh2HXBo95Rb-kSP2N0g-AtYLdzGmva-K2pqfWBVs7rnWl-r63pv334iJfkzGIdzdVxTsnr_d1msUrWT8uHxXydaM6gT7SQGccC-NCx5FKW1hZCoC3yshLptpTSYFVabouiQtRWihQzwVOQpSgYWD4l2SFXBx9jMFZ1wTUY9oqBGtGoPzRqRKOOaAbf7cHn2uGFBofS9Vb1uK99sAFb7aLi_0f8ABEoaps</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>MARS as an alternative approach of Gaussian graphical model for biochemical networks</title><source>EBSCOhost Business Source Complete</source><creator>Ayyıldız, Ezgi ; Ağraz, Melih ; Purutçuoğlu, Vilda</creator><creatorcontrib>Ayyıldız, Ezgi ; Ağraz, Melih ; Purutçuoğlu, Vilda</creatorcontrib><description>The Gaussian graphical model (GGM) is one of the well-known modelling approaches to describe biological networks under the steady-state condition via the precision matrix of data. In literature there are different methods to infer model parameters based on GGM. The neighbourhood selection with the lasso regression and the graphical lasso method are the most common techniques among these alternative estimation methods. But they can be computationally demanding when the system's dimension increases. Here, we suggest a non-parametric statistical approach, called the multivariate adaptive regression splines (MARS) as an alternative of GGM. To compare the performance of both models, we evaluate the findings of normal and non-normal data via the specificity, precision, F-measures and their computational costs. From the outputs, we see that MARS performs well, resulting in, a plausible alternative approach with respect to GGM in the construction of complex biological systems.</description><identifier>ISSN: 0266-4763</identifier><identifier>EISSN: 1360-0532</identifier><identifier>DOI: 10.1080/02664763.2016.1266465</identifier><language>eng</language><publisher>Taylor & Francis</publisher><subject>Deterministic inference ; Monte Carlo simulations ; multivariate adaptive regression splines ; optimal model selection ; systems biology</subject><ispartof>Journal of applied statistics, 2017-12, Vol.44 (16), p.2858-2876</ispartof><rights>2016 Informa UK Limited, trading as Taylor & Francis Group 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-c4853a70305393889ff744af769b42d988eab9f3f77baacf842a54320894710f3</citedby><cites>FETCH-LOGICAL-c310t-c4853a70305393889ff744af769b42d988eab9f3f77baacf842a54320894710f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ayyıldız, Ezgi</creatorcontrib><creatorcontrib>Ağraz, Melih</creatorcontrib><creatorcontrib>Purutçuoğlu, Vilda</creatorcontrib><title>MARS as an alternative approach of Gaussian graphical model for biochemical networks</title><title>Journal of applied statistics</title><description>The Gaussian graphical model (GGM) is one of the well-known modelling approaches to describe biological networks under the steady-state condition via the precision matrix of data. In literature there are different methods to infer model parameters based on GGM. The neighbourhood selection with the lasso regression and the graphical lasso method are the most common techniques among these alternative estimation methods. But they can be computationally demanding when the system's dimension increases. Here, we suggest a non-parametric statistical approach, called the multivariate adaptive regression splines (MARS) as an alternative of GGM. To compare the performance of both models, we evaluate the findings of normal and non-normal data via the specificity, precision, F-measures and their computational costs. From the outputs, we see that MARS performs well, resulting in, a plausible alternative approach with respect to GGM in the construction of complex biological systems.</description><subject>Deterministic inference</subject><subject>Monte Carlo simulations</subject><subject>multivariate adaptive regression splines</subject><subject>optimal model selection</subject><subject>systems biology</subject><issn>0266-4763</issn><issn>1360-0532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kFFLwzAUhYMoOKc_Qcgf6Lxp0jZ9cwzdhImg8zncZomLtk1JqrJ_b-vmq0-XeznncO5HyDWDGQMJN5DmuShyPkuB5TM2bnl2QiaM55BAxtNTMhk1ySg6JxcxvgOAZBmfkM3j_PmFYqTYUqx7E1rs3Zeh2HXBo95Rb-kSP2N0g-AtYLdzGmva-K2pqfWBVs7rnWl-r63pv334iJfkzGIdzdVxTsnr_d1msUrWT8uHxXydaM6gT7SQGccC-NCx5FKW1hZCoC3yshLptpTSYFVabouiQtRWihQzwVOQpSgYWD4l2SFXBx9jMFZ1wTUY9oqBGtGoPzRqRKOOaAbf7cHn2uGFBofS9Vb1uK99sAFb7aLi_0f8ABEoaps</recordid><startdate>20171210</startdate><enddate>20171210</enddate><creator>Ayyıldız, Ezgi</creator><creator>Ağraz, Melih</creator><creator>Purutçuoğlu, Vilda</creator><general>Taylor & Francis</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171210</creationdate><title>MARS as an alternative approach of Gaussian graphical model for biochemical networks</title><author>Ayyıldız, Ezgi ; Ağraz, Melih ; Purutçuoğlu, Vilda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-c4853a70305393889ff744af769b42d988eab9f3f77baacf842a54320894710f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Deterministic inference</topic><topic>Monte Carlo simulations</topic><topic>multivariate adaptive regression splines</topic><topic>optimal model selection</topic><topic>systems biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ayyıldız, Ezgi</creatorcontrib><creatorcontrib>Ağraz, Melih</creatorcontrib><creatorcontrib>Purutçuoğlu, Vilda</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ayyıldız, Ezgi</au><au>Ağraz, Melih</au><au>Purutçuoğlu, Vilda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MARS as an alternative approach of Gaussian graphical model for biochemical networks</atitle><jtitle>Journal of applied statistics</jtitle><date>2017-12-10</date><risdate>2017</risdate><volume>44</volume><issue>16</issue><spage>2858</spage><epage>2876</epage><pages>2858-2876</pages><issn>0266-4763</issn><eissn>1360-0532</eissn><abstract>The Gaussian graphical model (GGM) is one of the well-known modelling approaches to describe biological networks under the steady-state condition via the precision matrix of data. In literature there are different methods to infer model parameters based on GGM. The neighbourhood selection with the lasso regression and the graphical lasso method are the most common techniques among these alternative estimation methods. But they can be computationally demanding when the system's dimension increases. Here, we suggest a non-parametric statistical approach, called the multivariate adaptive regression splines (MARS) as an alternative of GGM. To compare the performance of both models, we evaluate the findings of normal and non-normal data via the specificity, precision, F-measures and their computational costs. From the outputs, we see that MARS performs well, resulting in, a plausible alternative approach with respect to GGM in the construction of complex biological systems.</abstract><pub>Taylor & Francis</pub><doi>10.1080/02664763.2016.1266465</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-4763 |
ispartof | Journal of applied statistics, 2017-12, Vol.44 (16), p.2858-2876 |
issn | 0266-4763 1360-0532 |
language | eng |
recordid | cdi_crossref_primary_10_1080_02664763_2016_1266465 |
source | EBSCOhost Business Source Complete |
subjects | Deterministic inference Monte Carlo simulations multivariate adaptive regression splines optimal model selection systems biology |
title | MARS as an alternative approach of Gaussian graphical model for biochemical networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T06%3A14%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MARS%20as%20an%20alternative%20approach%20of%20Gaussian%20graphical%20model%20for%20biochemical%20networks&rft.jtitle=Journal%20of%20applied%20statistics&rft.au=Ayy%C4%B1ld%C4%B1z,%20Ezgi&rft.date=2017-12-10&rft.volume=44&rft.issue=16&rft.spage=2858&rft.epage=2876&rft.pages=2858-2876&rft.issn=0266-4763&rft.eissn=1360-0532&rft_id=info:doi/10.1080/02664763.2016.1266465&rft_dat=%3Ccrossref_infor%3E10_1080_02664763_2016_1266465%3C/crossref_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |