Detecting influential observations in Liu and modified Liu estimators

In regression, detecting anomalous observations is a significant step for model-building process. Various influence measures based on different motivational arguments are designed to measure the influence of observations through different aspects of various regression models. The presence of influen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics 2013-08, Vol.40 (8), p.1735-1745
Hauptverfasser: Ertas, Hasan, Erisoglu, Murat, Kaciranlar, Selahattin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1745
container_issue 8
container_start_page 1735
container_title Journal of applied statistics
container_volume 40
creator Ertas, Hasan
Erisoglu, Murat
Kaciranlar, Selahattin
description In regression, detecting anomalous observations is a significant step for model-building process. Various influence measures based on different motivational arguments are designed to measure the influence of observations through different aspects of various regression models. The presence of influential observations in the data is complicated by the existence of multicollinearity. The purpose of this paper is to assess the influence of observations in the Liu [9] and modified Liu [15] estimators by using the method of approximate case deletion formulas suggested by Walker and Birch [14]. A numerical example using a real data set used by Longley [10] and a Monte Carlo simulation are given to illustrate the theoretical results.
doi_str_mv 10.1080/02664763.2013.794203
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_02664763_2013_794203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671387613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-137cd7cc8a4d21b17ab007a208ef140e774ee1d2c495688ee8015e53b205d7ff3</originalsourceid><addsrcrecordid>eNp9kDtPwzAQgC0EEqXwDxgisbCknGMndieESnlIlVhgthznglwlcbEdEP8eh8LCwHTS3Xevj5BzCgsKEq6gqCouKrYogLKFWPIC2AGZUVZBDiUrDslsQvKJOSYnIWwBQNKSzcj6FiOaaIfXzA5tN-IQre4yVwf07zpaN4RUyDZ2zPTQZL1rbGux-U5giLbX0flwSo5a3QU8-4lz8nK3fl495Jun-8fVzSY3HGjMKROmEcZIzZuC1lToGkDoAiS2lAMKwRFpUxi-LCspESXQEktWF1A2om3ZnFzu5-68exvTftXbYLDr9IBuDIpWgjIpKsoSevEH3brRD-k6lVZBBSWXPFF8TxnvQvDYqp1PP_lPRUFNbtWvWzW5VXu3qe1635acOd_rD-e7RkX92Tnfej0YGxT7d8IX3Q5-8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1400605484</pqid></control><display><type>article</type><title>Detecting influential observations in Liu and modified Liu estimators</title><source>Business Source Complete (BSC) 商管财经类全文数据库(完整版)</source><creator>Ertas, Hasan ; Erisoglu, Murat ; Kaciranlar, Selahattin</creator><creatorcontrib>Ertas, Hasan ; Erisoglu, Murat ; Kaciranlar, Selahattin</creatorcontrib><description>In regression, detecting anomalous observations is a significant step for model-building process. Various influence measures based on different motivational arguments are designed to measure the influence of observations through different aspects of various regression models. The presence of influential observations in the data is complicated by the existence of multicollinearity. The purpose of this paper is to assess the influence of observations in the Liu [9] and modified Liu [15] estimators by using the method of approximate case deletion formulas suggested by Walker and Birch [14]. A numerical example using a real data set used by Longley [10] and a Monte Carlo simulation are given to illustrate the theoretical results.</description><identifier>ISSN: 0266-4763</identifier><identifier>EISSN: 1360-0532</identifier><identifier>DOI: 10.1080/02664763.2013.794203</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Applied statistics ; Approximation ; Computer simulation ; Deletion ; diagnostics ; Estimating techniques ; Estimators ; influential observations ; Liu estimator ; Mathematical models ; modified Liu estimator ; Monte Carlo methods ; Monte Carlo simulation ; multicollinearity ; Numerical analysis ; Regression ; Regression analysis ; Studies</subject><ispartof>Journal of applied statistics, 2013-08, Vol.40 (8), p.1735-1745</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2013</rights><rights>Copyright Taylor &amp; Francis Ltd. 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-137cd7cc8a4d21b17ab007a208ef140e774ee1d2c495688ee8015e53b205d7ff3</citedby><cites>FETCH-LOGICAL-c401t-137cd7cc8a4d21b17ab007a208ef140e774ee1d2c495688ee8015e53b205d7ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ertas, Hasan</creatorcontrib><creatorcontrib>Erisoglu, Murat</creatorcontrib><creatorcontrib>Kaciranlar, Selahattin</creatorcontrib><title>Detecting influential observations in Liu and modified Liu estimators</title><title>Journal of applied statistics</title><description>In regression, detecting anomalous observations is a significant step for model-building process. Various influence measures based on different motivational arguments are designed to measure the influence of observations through different aspects of various regression models. The presence of influential observations in the data is complicated by the existence of multicollinearity. The purpose of this paper is to assess the influence of observations in the Liu [9] and modified Liu [15] estimators by using the method of approximate case deletion formulas suggested by Walker and Birch [14]. A numerical example using a real data set used by Longley [10] and a Monte Carlo simulation are given to illustrate the theoretical results.</description><subject>Applied statistics</subject><subject>Approximation</subject><subject>Computer simulation</subject><subject>Deletion</subject><subject>diagnostics</subject><subject>Estimating techniques</subject><subject>Estimators</subject><subject>influential observations</subject><subject>Liu estimator</subject><subject>Mathematical models</subject><subject>modified Liu estimator</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>multicollinearity</subject><subject>Numerical analysis</subject><subject>Regression</subject><subject>Regression analysis</subject><subject>Studies</subject><issn>0266-4763</issn><issn>1360-0532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAQgC0EEqXwDxgisbCknGMndieESnlIlVhgthznglwlcbEdEP8eh8LCwHTS3Xevj5BzCgsKEq6gqCouKrYogLKFWPIC2AGZUVZBDiUrDslsQvKJOSYnIWwBQNKSzcj6FiOaaIfXzA5tN-IQre4yVwf07zpaN4RUyDZ2zPTQZL1rbGux-U5giLbX0flwSo5a3QU8-4lz8nK3fl495Jun-8fVzSY3HGjMKROmEcZIzZuC1lToGkDoAiS2lAMKwRFpUxi-LCspESXQEktWF1A2om3ZnFzu5-68exvTftXbYLDr9IBuDIpWgjIpKsoSevEH3brRD-k6lVZBBSWXPFF8TxnvQvDYqp1PP_lPRUFNbtWvWzW5VXu3qe1635acOd_rD-e7RkX92Tnfej0YGxT7d8IX3Q5-8Q</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Ertas, Hasan</creator><creator>Erisoglu, Murat</creator><creator>Kaciranlar, Selahattin</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130801</creationdate><title>Detecting influential observations in Liu and modified Liu estimators</title><author>Ertas, Hasan ; Erisoglu, Murat ; Kaciranlar, Selahattin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-137cd7cc8a4d21b17ab007a208ef140e774ee1d2c495688ee8015e53b205d7ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied statistics</topic><topic>Approximation</topic><topic>Computer simulation</topic><topic>Deletion</topic><topic>diagnostics</topic><topic>Estimating techniques</topic><topic>Estimators</topic><topic>influential observations</topic><topic>Liu estimator</topic><topic>Mathematical models</topic><topic>modified Liu estimator</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>multicollinearity</topic><topic>Numerical analysis</topic><topic>Regression</topic><topic>Regression analysis</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ertas, Hasan</creatorcontrib><creatorcontrib>Erisoglu, Murat</creatorcontrib><creatorcontrib>Kaciranlar, Selahattin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ertas, Hasan</au><au>Erisoglu, Murat</au><au>Kaciranlar, Selahattin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting influential observations in Liu and modified Liu estimators</atitle><jtitle>Journal of applied statistics</jtitle><date>2013-08-01</date><risdate>2013</risdate><volume>40</volume><issue>8</issue><spage>1735</spage><epage>1745</epage><pages>1735-1745</pages><issn>0266-4763</issn><eissn>1360-0532</eissn><abstract>In regression, detecting anomalous observations is a significant step for model-building process. Various influence measures based on different motivational arguments are designed to measure the influence of observations through different aspects of various regression models. The presence of influential observations in the data is complicated by the existence of multicollinearity. The purpose of this paper is to assess the influence of observations in the Liu [9] and modified Liu [15] estimators by using the method of approximate case deletion formulas suggested by Walker and Birch [14]. A numerical example using a real data set used by Longley [10] and a Monte Carlo simulation are given to illustrate the theoretical results.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/02664763.2013.794203</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0266-4763
ispartof Journal of applied statistics, 2013-08, Vol.40 (8), p.1735-1745
issn 0266-4763
1360-0532
language eng
recordid cdi_crossref_primary_10_1080_02664763_2013_794203
source Business Source Complete (BSC) 商管财经类全文数据库(完整版)
subjects Applied statistics
Approximation
Computer simulation
Deletion
diagnostics
Estimating techniques
Estimators
influential observations
Liu estimator
Mathematical models
modified Liu estimator
Monte Carlo methods
Monte Carlo simulation
multicollinearity
Numerical analysis
Regression
Regression analysis
Studies
title Detecting influential observations in Liu and modified Liu estimators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T06%3A05%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20influential%20observations%20in%20Liu%20and%20modified%20Liu%20estimators&rft.jtitle=Journal%20of%20applied%20statistics&rft.au=Ertas,%20Hasan&rft.date=2013-08-01&rft.volume=40&rft.issue=8&rft.spage=1735&rft.epage=1745&rft.pages=1735-1745&rft.issn=0266-4763&rft.eissn=1360-0532&rft_id=info:doi/10.1080/02664763.2013.794203&rft_dat=%3Cproquest_cross%3E1671387613%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1400605484&rft_id=info:pmid/&rfr_iscdi=true