Combining a data-driven approach with seasonal forecast data to predict reservoir water volume in the Mediterranean area

Prolonged droughts and water scarcity have become more frequent in recent years, exacerbating the problem of artificial reservoir management in the Mediterranean area. This study proposes a methodology that combines a Nonlinear AutoRegressive network with eXogenous input (NARX) data-driven model wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrological sciences journal 2023-04, Vol.68 (6), p.764-781
Hauptverfasser: Francipane, Antonio, Arnone, Elisa, Noto, Leonardo V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 781
container_issue 6
container_start_page 764
container_title Hydrological sciences journal
container_volume 68
creator Francipane, Antonio
Arnone, Elisa
Noto, Leonardo V.
description Prolonged droughts and water scarcity have become more frequent in recent years, exacerbating the problem of artificial reservoir management in the Mediterranean area. This study proposes a methodology that combines a Nonlinear AutoRegressive network with eXogenous input (NARX) data-driven model with seasonal forecast (SF) data, with the aim to predict the water volume stored in reservoirs at a mid-term scale, as requested by the local authority. The methodology is applied to four Sicilian reservoirs that experienced water scarcity in the recent past. SFs produced at the European Centre for Medium-Range Weather Forecasting are used to force the NARX models. Also, the reservoirs are in a typical data-scarce environment, where very few or no measurements at all are available. The results show that the NARXs have the capability to reproduce the volumes stored in the considered reservoirs for the investigated period up to four months in advance. The performance of the modelling system strictly depends on: (i) the quality of climate forecasts and (ii) the strength of the autocorrelation for the water volumes.
doi_str_mv 10.1080/02626667.2023.2189521
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_02626667_2023_2189521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2815846551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-5ecc284692d8a59dc9c2a0a2ca631bc900360440295e29538d744620463d6ff3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_QQh43pqPTbp7U4pfUPHSe5hmszZlu6mTtLX_3tTWq4dhYHjmhfch5JazEWcVu2dCC631eCSYkCPBq1oJfkYGgitWyFKqczI4MMUBuiRXMS4Zk2Wt5YB8T8Jq7nvff1KgDSQoGvRb11NYrzGAXdCdTwsaHcTQQ0fbgM5CTL8sTYGu0TXeJoouOtwGj3QHySHdhm6zctT3NC0cfc9QviL0DnI2OrgmFy100d2c9pDMnp9mk9di-vHyNnmcFlZKmQrlrBVVqWvRVKDqxtZWAANhQUs-t3UuollZMlErl0dWzbgstWCllo1uWzkkd8fY3OZr42Iyy7DB3CQaUXGVk5XimVJHymKIEV1r1uhXgHvDmTk4Nn-OzcGxOTnOfw_HP99nMSvYBewak2DfBWxzWeujkf9H_ABlSoO_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2815846551</pqid></control><display><type>article</type><title>Combining a data-driven approach with seasonal forecast data to predict reservoir water volume in the Mediterranean area</title><source>Taylor &amp; Francis Journals Complete</source><creator>Francipane, Antonio ; Arnone, Elisa ; Noto, Leonardo V.</creator><creatorcontrib>Francipane, Antonio ; Arnone, Elisa ; Noto, Leonardo V.</creatorcontrib><description>Prolonged droughts and water scarcity have become more frequent in recent years, exacerbating the problem of artificial reservoir management in the Mediterranean area. This study proposes a methodology that combines a Nonlinear AutoRegressive network with eXogenous input (NARX) data-driven model with seasonal forecast (SF) data, with the aim to predict the water volume stored in reservoirs at a mid-term scale, as requested by the local authority. The methodology is applied to four Sicilian reservoirs that experienced water scarcity in the recent past. SFs produced at the European Centre for Medium-Range Weather Forecasting are used to force the NARX models. Also, the reservoirs are in a typical data-scarce environment, where very few or no measurements at all are available. The results show that the NARXs have the capability to reproduce the volumes stored in the considered reservoirs for the investigated period up to four months in advance. The performance of the modelling system strictly depends on: (i) the quality of climate forecasts and (ii) the strength of the autocorrelation for the water volumes.</description><identifier>ISSN: 0262-6667</identifier><identifier>EISSN: 2150-3435</identifier><identifier>DOI: 10.1080/02626667.2023.2189521</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Autocorrelation ; bias correction ; data driven ; data-scarce environment ; Drought ; Forecasting data ; Local government ; Mathematical models ; Mediterranean area ; Methods ; NARX ; Reservoir management ; Reservoir water ; Reservoirs ; Seasonal forecasting ; seasonal forecasts ; Volume transport ; Water ; water management in reservoirs ; Water scarcity ; Weather forecasting</subject><ispartof>Hydrological sciences journal, 2023-04, Vol.68 (6), p.764-781</ispartof><rights>2023 IAHS 2023</rights><rights>2023 IAHS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c333t-5ecc284692d8a59dc9c2a0a2ca631bc900360440295e29538d744620463d6ff3</cites><orcidid>0000-0001-7811-8023 ; 0000-0002-0022-5643 ; 0000-0002-3280-2898</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/02626667.2023.2189521$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/02626667.2023.2189521$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,60436</link.rule.ids></links><search><creatorcontrib>Francipane, Antonio</creatorcontrib><creatorcontrib>Arnone, Elisa</creatorcontrib><creatorcontrib>Noto, Leonardo V.</creatorcontrib><title>Combining a data-driven approach with seasonal forecast data to predict reservoir water volume in the Mediterranean area</title><title>Hydrological sciences journal</title><description>Prolonged droughts and water scarcity have become more frequent in recent years, exacerbating the problem of artificial reservoir management in the Mediterranean area. This study proposes a methodology that combines a Nonlinear AutoRegressive network with eXogenous input (NARX) data-driven model with seasonal forecast (SF) data, with the aim to predict the water volume stored in reservoirs at a mid-term scale, as requested by the local authority. The methodology is applied to four Sicilian reservoirs that experienced water scarcity in the recent past. SFs produced at the European Centre for Medium-Range Weather Forecasting are used to force the NARX models. Also, the reservoirs are in a typical data-scarce environment, where very few or no measurements at all are available. The results show that the NARXs have the capability to reproduce the volumes stored in the considered reservoirs for the investigated period up to four months in advance. The performance of the modelling system strictly depends on: (i) the quality of climate forecasts and (ii) the strength of the autocorrelation for the water volumes.</description><subject>Autocorrelation</subject><subject>bias correction</subject><subject>data driven</subject><subject>data-scarce environment</subject><subject>Drought</subject><subject>Forecasting data</subject><subject>Local government</subject><subject>Mathematical models</subject><subject>Mediterranean area</subject><subject>Methods</subject><subject>NARX</subject><subject>Reservoir management</subject><subject>Reservoir water</subject><subject>Reservoirs</subject><subject>Seasonal forecasting</subject><subject>seasonal forecasts</subject><subject>Volume transport</subject><subject>Water</subject><subject>water management in reservoirs</subject><subject>Water scarcity</subject><subject>Weather forecasting</subject><issn>0262-6667</issn><issn>2150-3435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_QQh43pqPTbp7U4pfUPHSe5hmszZlu6mTtLX_3tTWq4dhYHjmhfch5JazEWcVu2dCC631eCSYkCPBq1oJfkYGgitWyFKqczI4MMUBuiRXMS4Zk2Wt5YB8T8Jq7nvff1KgDSQoGvRb11NYrzGAXdCdTwsaHcTQQ0fbgM5CTL8sTYGu0TXeJoouOtwGj3QHySHdhm6zctT3NC0cfc9QviL0DnI2OrgmFy100d2c9pDMnp9mk9di-vHyNnmcFlZKmQrlrBVVqWvRVKDqxtZWAANhQUs-t3UuollZMlErl0dWzbgstWCllo1uWzkkd8fY3OZr42Iyy7DB3CQaUXGVk5XimVJHymKIEV1r1uhXgHvDmTk4Nn-OzcGxOTnOfw_HP99nMSvYBewak2DfBWxzWeujkf9H_ABlSoO_</recordid><startdate>20230426</startdate><enddate>20230426</enddate><creator>Francipane, Antonio</creator><creator>Arnone, Elisa</creator><creator>Noto, Leonardo V.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-7811-8023</orcidid><orcidid>https://orcid.org/0000-0002-0022-5643</orcidid><orcidid>https://orcid.org/0000-0002-3280-2898</orcidid></search><sort><creationdate>20230426</creationdate><title>Combining a data-driven approach with seasonal forecast data to predict reservoir water volume in the Mediterranean area</title><author>Francipane, Antonio ; Arnone, Elisa ; Noto, Leonardo V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-5ecc284692d8a59dc9c2a0a2ca631bc900360440295e29538d744620463d6ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Autocorrelation</topic><topic>bias correction</topic><topic>data driven</topic><topic>data-scarce environment</topic><topic>Drought</topic><topic>Forecasting data</topic><topic>Local government</topic><topic>Mathematical models</topic><topic>Mediterranean area</topic><topic>Methods</topic><topic>NARX</topic><topic>Reservoir management</topic><topic>Reservoir water</topic><topic>Reservoirs</topic><topic>Seasonal forecasting</topic><topic>seasonal forecasts</topic><topic>Volume transport</topic><topic>Water</topic><topic>water management in reservoirs</topic><topic>Water scarcity</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Francipane, Antonio</creatorcontrib><creatorcontrib>Arnone, Elisa</creatorcontrib><creatorcontrib>Noto, Leonardo V.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Hydrological sciences journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Francipane, Antonio</au><au>Arnone, Elisa</au><au>Noto, Leonardo V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining a data-driven approach with seasonal forecast data to predict reservoir water volume in the Mediterranean area</atitle><jtitle>Hydrological sciences journal</jtitle><date>2023-04-26</date><risdate>2023</risdate><volume>68</volume><issue>6</issue><spage>764</spage><epage>781</epage><pages>764-781</pages><issn>0262-6667</issn><eissn>2150-3435</eissn><abstract>Prolonged droughts and water scarcity have become more frequent in recent years, exacerbating the problem of artificial reservoir management in the Mediterranean area. This study proposes a methodology that combines a Nonlinear AutoRegressive network with eXogenous input (NARX) data-driven model with seasonal forecast (SF) data, with the aim to predict the water volume stored in reservoirs at a mid-term scale, as requested by the local authority. The methodology is applied to four Sicilian reservoirs that experienced water scarcity in the recent past. SFs produced at the European Centre for Medium-Range Weather Forecasting are used to force the NARX models. Also, the reservoirs are in a typical data-scarce environment, where very few or no measurements at all are available. The results show that the NARXs have the capability to reproduce the volumes stored in the considered reservoirs for the investigated period up to four months in advance. The performance of the modelling system strictly depends on: (i) the quality of climate forecasts and (ii) the strength of the autocorrelation for the water volumes.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/02626667.2023.2189521</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-7811-8023</orcidid><orcidid>https://orcid.org/0000-0002-0022-5643</orcidid><orcidid>https://orcid.org/0000-0002-3280-2898</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0262-6667
ispartof Hydrological sciences journal, 2023-04, Vol.68 (6), p.764-781
issn 0262-6667
2150-3435
language eng
recordid cdi_crossref_primary_10_1080_02626667_2023_2189521
source Taylor & Francis Journals Complete
subjects Autocorrelation
bias correction
data driven
data-scarce environment
Drought
Forecasting data
Local government
Mathematical models
Mediterranean area
Methods
NARX
Reservoir management
Reservoir water
Reservoirs
Seasonal forecasting
seasonal forecasts
Volume transport
Water
water management in reservoirs
Water scarcity
Weather forecasting
title Combining a data-driven approach with seasonal forecast data to predict reservoir water volume in the Mediterranean area
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A25%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20a%20data-driven%20approach%20with%20seasonal%20forecast%20data%20to%20predict%20reservoir%20water%20volume%20in%20the%20Mediterranean%20area&rft.jtitle=Hydrological%20sciences%20journal&rft.au=Francipane,%20Antonio&rft.date=2023-04-26&rft.volume=68&rft.issue=6&rft.spage=764&rft.epage=781&rft.pages=764-781&rft.issn=0262-6667&rft.eissn=2150-3435&rft_id=info:doi/10.1080/02626667.2023.2189521&rft_dat=%3Cproquest_cross%3E2815846551%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2815846551&rft_id=info:pmid/&rfr_iscdi=true