Combining a data-driven approach with seasonal forecast data to predict reservoir water volume in the Mediterranean area
Prolonged droughts and water scarcity have become more frequent in recent years, exacerbating the problem of artificial reservoir management in the Mediterranean area. This study proposes a methodology that combines a Nonlinear AutoRegressive network with eXogenous input (NARX) data-driven model wit...
Gespeichert in:
Veröffentlicht in: | Hydrological sciences journal 2023-04, Vol.68 (6), p.764-781 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 781 |
---|---|
container_issue | 6 |
container_start_page | 764 |
container_title | Hydrological sciences journal |
container_volume | 68 |
creator | Francipane, Antonio Arnone, Elisa Noto, Leonardo V. |
description | Prolonged droughts and water scarcity have become more frequent in recent years, exacerbating the problem of artificial reservoir management in the Mediterranean area. This study proposes a methodology that combines a Nonlinear AutoRegressive network with eXogenous input (NARX) data-driven model with seasonal forecast (SF) data, with the aim to predict the water volume stored in reservoirs at a mid-term scale, as requested by the local authority. The methodology is applied to four Sicilian reservoirs that experienced water scarcity in the recent past. SFs produced at the European Centre for Medium-Range Weather Forecasting are used to force the NARX models. Also, the reservoirs are in a typical data-scarce environment, where very few or no measurements at all are available. The results show that the NARXs have the capability to reproduce the volumes stored in the considered reservoirs for the investigated period up to four months in advance. The performance of the modelling system strictly depends on: (i) the quality of climate forecasts and (ii) the strength of the autocorrelation for the water volumes. |
doi_str_mv | 10.1080/02626667.2023.2189521 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_02626667_2023_2189521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2815846551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-5ecc284692d8a59dc9c2a0a2ca631bc900360440295e29538d744620463d6ff3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_QQh43pqPTbp7U4pfUPHSe5hmszZlu6mTtLX_3tTWq4dhYHjmhfch5JazEWcVu2dCC631eCSYkCPBq1oJfkYGgitWyFKqczI4MMUBuiRXMS4Zk2Wt5YB8T8Jq7nvff1KgDSQoGvRb11NYrzGAXdCdTwsaHcTQQ0fbgM5CTL8sTYGu0TXeJoouOtwGj3QHySHdhm6zctT3NC0cfc9QviL0DnI2OrgmFy100d2c9pDMnp9mk9di-vHyNnmcFlZKmQrlrBVVqWvRVKDqxtZWAANhQUs-t3UuollZMlErl0dWzbgstWCllo1uWzkkd8fY3OZr42Iyy7DB3CQaUXGVk5XimVJHymKIEV1r1uhXgHvDmTk4Nn-OzcGxOTnOfw_HP99nMSvYBewak2DfBWxzWeujkf9H_ABlSoO_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2815846551</pqid></control><display><type>article</type><title>Combining a data-driven approach with seasonal forecast data to predict reservoir water volume in the Mediterranean area</title><source>Taylor & Francis Journals Complete</source><creator>Francipane, Antonio ; Arnone, Elisa ; Noto, Leonardo V.</creator><creatorcontrib>Francipane, Antonio ; Arnone, Elisa ; Noto, Leonardo V.</creatorcontrib><description>Prolonged droughts and water scarcity have become more frequent in recent years, exacerbating the problem of artificial reservoir management in the Mediterranean area. This study proposes a methodology that combines a Nonlinear AutoRegressive network with eXogenous input (NARX) data-driven model with seasonal forecast (SF) data, with the aim to predict the water volume stored in reservoirs at a mid-term scale, as requested by the local authority. The methodology is applied to four Sicilian reservoirs that experienced water scarcity in the recent past. SFs produced at the European Centre for Medium-Range Weather Forecasting are used to force the NARX models. Also, the reservoirs are in a typical data-scarce environment, where very few or no measurements at all are available. The results show that the NARXs have the capability to reproduce the volumes stored in the considered reservoirs for the investigated period up to four months in advance. The performance of the modelling system strictly depends on: (i) the quality of climate forecasts and (ii) the strength of the autocorrelation for the water volumes.</description><identifier>ISSN: 0262-6667</identifier><identifier>EISSN: 2150-3435</identifier><identifier>DOI: 10.1080/02626667.2023.2189521</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Autocorrelation ; bias correction ; data driven ; data-scarce environment ; Drought ; Forecasting data ; Local government ; Mathematical models ; Mediterranean area ; Methods ; NARX ; Reservoir management ; Reservoir water ; Reservoirs ; Seasonal forecasting ; seasonal forecasts ; Volume transport ; Water ; water management in reservoirs ; Water scarcity ; Weather forecasting</subject><ispartof>Hydrological sciences journal, 2023-04, Vol.68 (6), p.764-781</ispartof><rights>2023 IAHS 2023</rights><rights>2023 IAHS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c333t-5ecc284692d8a59dc9c2a0a2ca631bc900360440295e29538d744620463d6ff3</cites><orcidid>0000-0001-7811-8023 ; 0000-0002-0022-5643 ; 0000-0002-3280-2898</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/02626667.2023.2189521$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/02626667.2023.2189521$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,60436</link.rule.ids></links><search><creatorcontrib>Francipane, Antonio</creatorcontrib><creatorcontrib>Arnone, Elisa</creatorcontrib><creatorcontrib>Noto, Leonardo V.</creatorcontrib><title>Combining a data-driven approach with seasonal forecast data to predict reservoir water volume in the Mediterranean area</title><title>Hydrological sciences journal</title><description>Prolonged droughts and water scarcity have become more frequent in recent years, exacerbating the problem of artificial reservoir management in the Mediterranean area. This study proposes a methodology that combines a Nonlinear AutoRegressive network with eXogenous input (NARX) data-driven model with seasonal forecast (SF) data, with the aim to predict the water volume stored in reservoirs at a mid-term scale, as requested by the local authority. The methodology is applied to four Sicilian reservoirs that experienced water scarcity in the recent past. SFs produced at the European Centre for Medium-Range Weather Forecasting are used to force the NARX models. Also, the reservoirs are in a typical data-scarce environment, where very few or no measurements at all are available. The results show that the NARXs have the capability to reproduce the volumes stored in the considered reservoirs for the investigated period up to four months in advance. The performance of the modelling system strictly depends on: (i) the quality of climate forecasts and (ii) the strength of the autocorrelation for the water volumes.</description><subject>Autocorrelation</subject><subject>bias correction</subject><subject>data driven</subject><subject>data-scarce environment</subject><subject>Drought</subject><subject>Forecasting data</subject><subject>Local government</subject><subject>Mathematical models</subject><subject>Mediterranean area</subject><subject>Methods</subject><subject>NARX</subject><subject>Reservoir management</subject><subject>Reservoir water</subject><subject>Reservoirs</subject><subject>Seasonal forecasting</subject><subject>seasonal forecasts</subject><subject>Volume transport</subject><subject>Water</subject><subject>water management in reservoirs</subject><subject>Water scarcity</subject><subject>Weather forecasting</subject><issn>0262-6667</issn><issn>2150-3435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_QQh43pqPTbp7U4pfUPHSe5hmszZlu6mTtLX_3tTWq4dhYHjmhfch5JazEWcVu2dCC631eCSYkCPBq1oJfkYGgitWyFKqczI4MMUBuiRXMS4Zk2Wt5YB8T8Jq7nvff1KgDSQoGvRb11NYrzGAXdCdTwsaHcTQQ0fbgM5CTL8sTYGu0TXeJoouOtwGj3QHySHdhm6zctT3NC0cfc9QviL0DnI2OrgmFy100d2c9pDMnp9mk9di-vHyNnmcFlZKmQrlrBVVqWvRVKDqxtZWAANhQUs-t3UuollZMlErl0dWzbgstWCllo1uWzkkd8fY3OZr42Iyy7DB3CQaUXGVk5XimVJHymKIEV1r1uhXgHvDmTk4Nn-OzcGxOTnOfw_HP99nMSvYBewak2DfBWxzWeujkf9H_ABlSoO_</recordid><startdate>20230426</startdate><enddate>20230426</enddate><creator>Francipane, Antonio</creator><creator>Arnone, Elisa</creator><creator>Noto, Leonardo V.</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-7811-8023</orcidid><orcidid>https://orcid.org/0000-0002-0022-5643</orcidid><orcidid>https://orcid.org/0000-0002-3280-2898</orcidid></search><sort><creationdate>20230426</creationdate><title>Combining a data-driven approach with seasonal forecast data to predict reservoir water volume in the Mediterranean area</title><author>Francipane, Antonio ; Arnone, Elisa ; Noto, Leonardo V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-5ecc284692d8a59dc9c2a0a2ca631bc900360440295e29538d744620463d6ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Autocorrelation</topic><topic>bias correction</topic><topic>data driven</topic><topic>data-scarce environment</topic><topic>Drought</topic><topic>Forecasting data</topic><topic>Local government</topic><topic>Mathematical models</topic><topic>Mediterranean area</topic><topic>Methods</topic><topic>NARX</topic><topic>Reservoir management</topic><topic>Reservoir water</topic><topic>Reservoirs</topic><topic>Seasonal forecasting</topic><topic>seasonal forecasts</topic><topic>Volume transport</topic><topic>Water</topic><topic>water management in reservoirs</topic><topic>Water scarcity</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Francipane, Antonio</creatorcontrib><creatorcontrib>Arnone, Elisa</creatorcontrib><creatorcontrib>Noto, Leonardo V.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Hydrological sciences journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Francipane, Antonio</au><au>Arnone, Elisa</au><au>Noto, Leonardo V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining a data-driven approach with seasonal forecast data to predict reservoir water volume in the Mediterranean area</atitle><jtitle>Hydrological sciences journal</jtitle><date>2023-04-26</date><risdate>2023</risdate><volume>68</volume><issue>6</issue><spage>764</spage><epage>781</epage><pages>764-781</pages><issn>0262-6667</issn><eissn>2150-3435</eissn><abstract>Prolonged droughts and water scarcity have become more frequent in recent years, exacerbating the problem of artificial reservoir management in the Mediterranean area. This study proposes a methodology that combines a Nonlinear AutoRegressive network with eXogenous input (NARX) data-driven model with seasonal forecast (SF) data, with the aim to predict the water volume stored in reservoirs at a mid-term scale, as requested by the local authority. The methodology is applied to four Sicilian reservoirs that experienced water scarcity in the recent past. SFs produced at the European Centre for Medium-Range Weather Forecasting are used to force the NARX models. Also, the reservoirs are in a typical data-scarce environment, where very few or no measurements at all are available. The results show that the NARXs have the capability to reproduce the volumes stored in the considered reservoirs for the investigated period up to four months in advance. The performance of the modelling system strictly depends on: (i) the quality of climate forecasts and (ii) the strength of the autocorrelation for the water volumes.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/02626667.2023.2189521</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-7811-8023</orcidid><orcidid>https://orcid.org/0000-0002-0022-5643</orcidid><orcidid>https://orcid.org/0000-0002-3280-2898</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0262-6667 |
ispartof | Hydrological sciences journal, 2023-04, Vol.68 (6), p.764-781 |
issn | 0262-6667 2150-3435 |
language | eng |
recordid | cdi_crossref_primary_10_1080_02626667_2023_2189521 |
source | Taylor & Francis Journals Complete |
subjects | Autocorrelation bias correction data driven data-scarce environment Drought Forecasting data Local government Mathematical models Mediterranean area Methods NARX Reservoir management Reservoir water Reservoirs Seasonal forecasting seasonal forecasts Volume transport Water water management in reservoirs Water scarcity Weather forecasting |
title | Combining a data-driven approach with seasonal forecast data to predict reservoir water volume in the Mediterranean area |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A25%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20a%20data-driven%20approach%20with%20seasonal%20forecast%20data%20to%20predict%20reservoir%20water%20volume%20in%20the%20Mediterranean%20area&rft.jtitle=Hydrological%20sciences%20journal&rft.au=Francipane,%20Antonio&rft.date=2023-04-26&rft.volume=68&rft.issue=6&rft.spage=764&rft.epage=781&rft.pages=764-781&rft.issn=0262-6667&rft.eissn=2150-3435&rft_id=info:doi/10.1080/02626667.2023.2189521&rft_dat=%3Cproquest_cross%3E2815846551%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2815846551&rft_id=info:pmid/&rfr_iscdi=true |