Stochastic and analytical approaches for sediment accumulation in river reservoirs

Sediment accumulation in a river reservoir is studied by stochastic time series models and analytical approach. The first-order moving average process is found the best for the suspended sediment discharge time series of the Juniata River at Newport, Pennsylvania, USA. Synthetic suspended sediment d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrological sciences journal 2020-04, Vol.65 (6), p.984-994
Hauptverfasser: Akar, Tanju, Aksoy, Hafzullah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 994
container_issue 6
container_start_page 984
container_title Hydrological sciences journal
container_volume 65
creator Akar, Tanju
Aksoy, Hafzullah
description Sediment accumulation in a river reservoir is studied by stochastic time series models and analytical approach. The first-order moving average process is found the best for the suspended sediment discharge time series of the Juniata River at Newport, Pennsylvania, USA. Synthetic suspended sediment discharges are first generated with the chosen model after which analytical expressions are derived for the expected value and variance of sediment accumulation in the reservoir. The expected value and variance of the volume of sediment accumulation in the reservoir are calculated from a thousand synthetic time series each 38 years long and compared to the analytical approach. Stochastic and analytical approaches perfectly trace the observation in terms of the expected value and variability. Therefore, it is concluded that the expected value and variance of sediment accumulation in a reservoir could be estimated by analytical expressions without the cost of synthetic data generation mechanisms.
doi_str_mv 10.1080/02626667.2020.1728474
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_02626667_2020_1728474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2400022424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-4cd4732e886d6c8d450315ca6711e06c24ba1865e3d4930ee9b9041e784fcad63</originalsourceid><addsrcrecordid>eNqNkNtKxDAURYMoOF4-QSj4KNWTS9PMmzJ4A0Hw8hwy6SmTodOMSarM35s66qMYCOGEtQ-bRcgJhXMKCi6ASSalrM8ZsPxVMyVqsUMmjFZQcsGrXTIZmXKE9slBjEsALqaST8jTc_J2YWJytjB9k6_pNnkwXWHW6-CNXWAsWh-KiI1bYZ8KY-2wGjqTnO8L1xfBvWMoAkYM796FeET2WtNFPP5-D8nrzfXL7K58eLy9n109lJZzlUphG1FzhkrJRlrViAo4rayRNaUI0jIxN1TJCnkjphwQp_MpCIq1Eq01jeSH5HS7N9d8GzAmvfRDyP2jZgIAGBNMZKraUjb4GAO2eh3cyoSNpqBHffpHnx716W99Oae2uQ-c-zZah73F32xeX1GRq8N46MylLx0zP_QpR8_-H8305ZZ2fda8Mh8-dI1OZtP50AbTWxc1_7vrJ9Gcl6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2400022424</pqid></control><display><type>article</type><title>Stochastic and analytical approaches for sediment accumulation in river reservoirs</title><source>Access via Taylor &amp; Francis</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Alma/SFX Local Collection</source><creator>Akar, Tanju ; Aksoy, Hafzullah</creator><creatorcontrib>Akar, Tanju ; Aksoy, Hafzullah</creatorcontrib><description>Sediment accumulation in a river reservoir is studied by stochastic time series models and analytical approach. The first-order moving average process is found the best for the suspended sediment discharge time series of the Juniata River at Newport, Pennsylvania, USA. Synthetic suspended sediment discharges are first generated with the chosen model after which analytical expressions are derived for the expected value and variance of sediment accumulation in the reservoir. The expected value and variance of the volume of sediment accumulation in the reservoir are calculated from a thousand synthetic time series each 38 years long and compared to the analytical approach. Stochastic and analytical approaches perfectly trace the observation in terms of the expected value and variability. Therefore, it is concluded that the expected value and variance of sediment accumulation in a reservoir could be estimated by analytical expressions without the cost of synthetic data generation mechanisms.</description><identifier>ISSN: 0262-6667</identifier><identifier>EISSN: 2150-3435</identifier><identifier>DOI: 10.1080/02626667.2020.1728474</identifier><language>eng</language><publisher>ABINGDON: Taylor &amp; Francis</publisher><subject>Accumulation ; Cost analysis ; Discharge ; Exact solutions ; Expected values ; Fluvial sediments ; Geological time ; Juniata River ; Mathematical analysis ; moving average model ; Physical Sciences ; Reservoirs ; river reservoir ; Rivers ; Science &amp; Technology ; Sediment ; Sediment discharge ; Sediments ; Stochasticity ; storage volume ; suspended sediment discharge ; Suspended sediments ; Time series ; Water Resources</subject><ispartof>Hydrological sciences journal, 2020-04, Vol.65 (6), p.984-994</ispartof><rights>2020 IAHS 2020</rights><rights>2020 IAHS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>5</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000514886000001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c338t-4cd4732e886d6c8d450315ca6711e06c24ba1865e3d4930ee9b9041e784fcad63</citedby><cites>FETCH-LOGICAL-c338t-4cd4732e886d6c8d450315ca6711e06c24ba1865e3d4930ee9b9041e784fcad63</cites><orcidid>0000-0001-5807-5660</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/02626667.2020.1728474$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/02626667.2020.1728474$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,28253,59652,60441</link.rule.ids></links><search><creatorcontrib>Akar, Tanju</creatorcontrib><creatorcontrib>Aksoy, Hafzullah</creatorcontrib><title>Stochastic and analytical approaches for sediment accumulation in river reservoirs</title><title>Hydrological sciences journal</title><addtitle>HYDROLOG SCI J</addtitle><description>Sediment accumulation in a river reservoir is studied by stochastic time series models and analytical approach. The first-order moving average process is found the best for the suspended sediment discharge time series of the Juniata River at Newport, Pennsylvania, USA. Synthetic suspended sediment discharges are first generated with the chosen model after which analytical expressions are derived for the expected value and variance of sediment accumulation in the reservoir. The expected value and variance of the volume of sediment accumulation in the reservoir are calculated from a thousand synthetic time series each 38 years long and compared to the analytical approach. Stochastic and analytical approaches perfectly trace the observation in terms of the expected value and variability. Therefore, it is concluded that the expected value and variance of sediment accumulation in a reservoir could be estimated by analytical expressions without the cost of synthetic data generation mechanisms.</description><subject>Accumulation</subject><subject>Cost analysis</subject><subject>Discharge</subject><subject>Exact solutions</subject><subject>Expected values</subject><subject>Fluvial sediments</subject><subject>Geological time</subject><subject>Juniata River</subject><subject>Mathematical analysis</subject><subject>moving average model</subject><subject>Physical Sciences</subject><subject>Reservoirs</subject><subject>river reservoir</subject><subject>Rivers</subject><subject>Science &amp; Technology</subject><subject>Sediment</subject><subject>Sediment discharge</subject><subject>Sediments</subject><subject>Stochasticity</subject><subject>storage volume</subject><subject>suspended sediment discharge</subject><subject>Suspended sediments</subject><subject>Time series</subject><subject>Water Resources</subject><issn>0262-6667</issn><issn>2150-3435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkNtKxDAURYMoOF4-QSj4KNWTS9PMmzJ4A0Hw8hwy6SmTodOMSarM35s66qMYCOGEtQ-bRcgJhXMKCi6ASSalrM8ZsPxVMyVqsUMmjFZQcsGrXTIZmXKE9slBjEsALqaST8jTc_J2YWJytjB9k6_pNnkwXWHW6-CNXWAsWh-KiI1bYZ8KY-2wGjqTnO8L1xfBvWMoAkYM796FeET2WtNFPP5-D8nrzfXL7K58eLy9n109lJZzlUphG1FzhkrJRlrViAo4rayRNaUI0jIxN1TJCnkjphwQp_MpCIq1Eq01jeSH5HS7N9d8GzAmvfRDyP2jZgIAGBNMZKraUjb4GAO2eh3cyoSNpqBHffpHnx716W99Oae2uQ-c-zZah73F32xeX1GRq8N46MylLx0zP_QpR8_-H8305ZZ2fda8Mh8-dI1OZtP50AbTWxc1_7vrJ9Gcl6A</recordid><startdate>20200425</startdate><enddate>20200425</enddate><creator>Akar, Tanju</creator><creator>Aksoy, Hafzullah</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-5807-5660</orcidid></search><sort><creationdate>20200425</creationdate><title>Stochastic and analytical approaches for sediment accumulation in river reservoirs</title><author>Akar, Tanju ; Aksoy, Hafzullah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-4cd4732e886d6c8d450315ca6711e06c24ba1865e3d4930ee9b9041e784fcad63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accumulation</topic><topic>Cost analysis</topic><topic>Discharge</topic><topic>Exact solutions</topic><topic>Expected values</topic><topic>Fluvial sediments</topic><topic>Geological time</topic><topic>Juniata River</topic><topic>Mathematical analysis</topic><topic>moving average model</topic><topic>Physical Sciences</topic><topic>Reservoirs</topic><topic>river reservoir</topic><topic>Rivers</topic><topic>Science &amp; Technology</topic><topic>Sediment</topic><topic>Sediment discharge</topic><topic>Sediments</topic><topic>Stochasticity</topic><topic>storage volume</topic><topic>suspended sediment discharge</topic><topic>Suspended sediments</topic><topic>Time series</topic><topic>Water Resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akar, Tanju</creatorcontrib><creatorcontrib>Aksoy, Hafzullah</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Hydrological sciences journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akar, Tanju</au><au>Aksoy, Hafzullah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic and analytical approaches for sediment accumulation in river reservoirs</atitle><jtitle>Hydrological sciences journal</jtitle><stitle>HYDROLOG SCI J</stitle><date>2020-04-25</date><risdate>2020</risdate><volume>65</volume><issue>6</issue><spage>984</spage><epage>994</epage><pages>984-994</pages><issn>0262-6667</issn><eissn>2150-3435</eissn><abstract>Sediment accumulation in a river reservoir is studied by stochastic time series models and analytical approach. The first-order moving average process is found the best for the suspended sediment discharge time series of the Juniata River at Newport, Pennsylvania, USA. Synthetic suspended sediment discharges are first generated with the chosen model after which analytical expressions are derived for the expected value and variance of sediment accumulation in the reservoir. The expected value and variance of the volume of sediment accumulation in the reservoir are calculated from a thousand synthetic time series each 38 years long and compared to the analytical approach. Stochastic and analytical approaches perfectly trace the observation in terms of the expected value and variability. Therefore, it is concluded that the expected value and variance of sediment accumulation in a reservoir could be estimated by analytical expressions without the cost of synthetic data generation mechanisms.</abstract><cop>ABINGDON</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/02626667.2020.1728474</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5807-5660</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0262-6667
ispartof Hydrological sciences journal, 2020-04, Vol.65 (6), p.984-994
issn 0262-6667
2150-3435
language eng
recordid cdi_crossref_primary_10_1080_02626667_2020_1728474
source Access via Taylor & Francis; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection
subjects Accumulation
Cost analysis
Discharge
Exact solutions
Expected values
Fluvial sediments
Geological time
Juniata River
Mathematical analysis
moving average model
Physical Sciences
Reservoirs
river reservoir
Rivers
Science & Technology
Sediment
Sediment discharge
Sediments
Stochasticity
storage volume
suspended sediment discharge
Suspended sediments
Time series
Water Resources
title Stochastic and analytical approaches for sediment accumulation in river reservoirs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T05%3A44%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20and%20analytical%20approaches%20for%20sediment%20accumulation%20in%20river%20reservoirs&rft.jtitle=Hydrological%20sciences%20journal&rft.au=Akar,%20Tanju&rft.date=2020-04-25&rft.volume=65&rft.issue=6&rft.spage=984&rft.epage=994&rft.pages=984-994&rft.issn=0262-6667&rft.eissn=2150-3435&rft_id=info:doi/10.1080/02626667.2020.1728474&rft_dat=%3Cproquest_cross%3E2400022424%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2400022424&rft_id=info:pmid/&rfr_iscdi=true