A procedure to solve optimal control problems numerically by parametrization via runge-kutta-methods

In this paper, we consider a class of nonlinear optimal control problems (Bolzaproblems) with constraints of the control vector, initial and boundary conditions of the state vector. The time interval is fixed. We parametrize the control function: we use a fixed uniform partition of the time interval...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimization 1998-01, Vol.44 (4), p.421-431
Hauptverfasser: Poppe, H., Kautz, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 431
container_issue 4
container_start_page 421
container_title Optimization
container_volume 44
creator Poppe, H.
Kautz, K.
description In this paper, we consider a class of nonlinear optimal control problems (Bolzaproblems) with constraints of the control vector, initial and boundary conditions of the state vector. The time interval is fixed. We parametrize the control function: we use a fixed uniform partition of the time interval and the control functions are approximated by step func¬tions, where the values of these functions are the optimization variables (parameters). Bat we can approximate the control function by (piecewise defined) polynomials of higher degrees too. In our second example we tested an approach with a polynomials of first degree. To get the approximative values of the state variables we implement the parameters into a integration scheme of Runge-Kutta type. Finally for the optimization the integration scheme directly is combined with a nonlinear programming-solver, for instance an SQP-solver. The existence of an optimal solution is assumed. Convergence properties of this method are not considered in this paper, but will be treated in a forthcoming paper
doi_str_mv 10.1080/02331939808844420
format Article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_02331939808844420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_02331939808844420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c213t-57ad753974e5630826ee84fda502cfdcdb205106051775b99618e049b83d216d3</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwANz8AoH1TxJb4lJV_EmVuMA5cmwHAk4c2U4hPD2pyq1CXHYPM9-uZhC6JHBFQMA1UMaIZFKAEJxzCkdoQYDKjEueH6PFTs9mAz9FZzG-A1BSUL5AZoWH4LU1Y7A4eRy921rsh9R2ymHt-xS821lqZ7uI-7GzodXKuQnXEx5UUJ1Nof1WqfU93rYKh7F_tdnHmJLKZu3Nm3iOThrlor343Uv0cnf7vH7INk_3j-vVJtOUsJTlpTJlzmTJbV4wELSwVvDGqByobow2NYWcQDGPssxrKQsiLHBZC2bmOIYtEdnf1cHHGGxTDWHOEaaKQLWrqTqoaWbKPdP2jQ-d-vTBmSqpyfnQBNXrNh5SVfpKM3nzL8n-fvwDtUOBRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A procedure to solve optimal control problems numerically by parametrization via runge-kutta-methods</title><source>Taylor &amp; Francis Journals Complete</source><creator>Poppe, H. ; Kautz, K.</creator><creatorcontrib>Poppe, H. ; Kautz, K.</creatorcontrib><description>In this paper, we consider a class of nonlinear optimal control problems (Bolzaproblems) with constraints of the control vector, initial and boundary conditions of the state vector. The time interval is fixed. We parametrize the control function: we use a fixed uniform partition of the time interval and the control functions are approximated by step func¬tions, where the values of these functions are the optimization variables (parameters). Bat we can approximate the control function by (piecewise defined) polynomials of higher degrees too. In our second example we tested an approach with a polynomials of first degree. To get the approximative values of the state variables we implement the parameters into a integration scheme of Runge-Kutta type. Finally for the optimization the integration scheme directly is combined with a nonlinear programming-solver, for instance an SQP-solver. The existence of an optimal solution is assumed. Convergence properties of this method are not considered in this paper, but will be treated in a forthcoming paper</description><identifier>ISSN: 0233-1934</identifier><identifier>EISSN: 1029-4945</identifier><identifier>DOI: 10.1080/02331939808844420</identifier><language>eng</language><publisher>Gordon and Breach Science Publishers</publisher><subject>Bolzaproblem ; Constaints of the Controls and of the State Variables Respectively ; Direct Implementation of the Parameters into a Solver of Runge-Kutta Type ; End conditions for the State Variables ; Numerical Solution ; Optimal Control ; Parametrization</subject><ispartof>Optimization, 1998-01, Vol.44 (4), p.421-431</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c213t-57ad753974e5630826ee84fda502cfdcdb205106051775b99618e049b83d216d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/02331939808844420$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/02331939808844420$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids></links><search><creatorcontrib>Poppe, H.</creatorcontrib><creatorcontrib>Kautz, K.</creatorcontrib><title>A procedure to solve optimal control problems numerically by parametrization via runge-kutta-methods</title><title>Optimization</title><description>In this paper, we consider a class of nonlinear optimal control problems (Bolzaproblems) with constraints of the control vector, initial and boundary conditions of the state vector. The time interval is fixed. We parametrize the control function: we use a fixed uniform partition of the time interval and the control functions are approximated by step func¬tions, where the values of these functions are the optimization variables (parameters). Bat we can approximate the control function by (piecewise defined) polynomials of higher degrees too. In our second example we tested an approach with a polynomials of first degree. To get the approximative values of the state variables we implement the parameters into a integration scheme of Runge-Kutta type. Finally for the optimization the integration scheme directly is combined with a nonlinear programming-solver, for instance an SQP-solver. The existence of an optimal solution is assumed. Convergence properties of this method are not considered in this paper, but will be treated in a forthcoming paper</description><subject>Bolzaproblem</subject><subject>Constaints of the Controls and of the State Variables Respectively</subject><subject>Direct Implementation of the Parameters into a Solver of Runge-Kutta Type</subject><subject>End conditions for the State Variables</subject><subject>Numerical Solution</subject><subject>Optimal Control</subject><subject>Parametrization</subject><issn>0233-1934</issn><issn>1029-4945</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqXwANz8AoH1TxJb4lJV_EmVuMA5cmwHAk4c2U4hPD2pyq1CXHYPM9-uZhC6JHBFQMA1UMaIZFKAEJxzCkdoQYDKjEueH6PFTs9mAz9FZzG-A1BSUL5AZoWH4LU1Y7A4eRy921rsh9R2ymHt-xS821lqZ7uI-7GzodXKuQnXEx5UUJ1Nof1WqfU93rYKh7F_tdnHmJLKZu3Nm3iOThrlor343Uv0cnf7vH7INk_3j-vVJtOUsJTlpTJlzmTJbV4wELSwVvDGqByobow2NYWcQDGPssxrKQsiLHBZC2bmOIYtEdnf1cHHGGxTDWHOEaaKQLWrqTqoaWbKPdP2jQ-d-vTBmSqpyfnQBNXrNh5SVfpKM3nzL8n-fvwDtUOBRw</recordid><startdate>19980101</startdate><enddate>19980101</enddate><creator>Poppe, H.</creator><creator>Kautz, K.</creator><general>Gordon and Breach Science Publishers</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19980101</creationdate><title>A procedure to solve optimal control problems numerically by parametrization via runge-kutta-methods</title><author>Poppe, H. ; Kautz, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c213t-57ad753974e5630826ee84fda502cfdcdb205106051775b99618e049b83d216d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Bolzaproblem</topic><topic>Constaints of the Controls and of the State Variables Respectively</topic><topic>Direct Implementation of the Parameters into a Solver of Runge-Kutta Type</topic><topic>End conditions for the State Variables</topic><topic>Numerical Solution</topic><topic>Optimal Control</topic><topic>Parametrization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poppe, H.</creatorcontrib><creatorcontrib>Kautz, K.</creatorcontrib><collection>CrossRef</collection><jtitle>Optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poppe, H.</au><au>Kautz, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A procedure to solve optimal control problems numerically by parametrization via runge-kutta-methods</atitle><jtitle>Optimization</jtitle><date>1998-01-01</date><risdate>1998</risdate><volume>44</volume><issue>4</issue><spage>421</spage><epage>431</epage><pages>421-431</pages><issn>0233-1934</issn><eissn>1029-4945</eissn><abstract>In this paper, we consider a class of nonlinear optimal control problems (Bolzaproblems) with constraints of the control vector, initial and boundary conditions of the state vector. The time interval is fixed. We parametrize the control function: we use a fixed uniform partition of the time interval and the control functions are approximated by step func¬tions, where the values of these functions are the optimization variables (parameters). Bat we can approximate the control function by (piecewise defined) polynomials of higher degrees too. In our second example we tested an approach with a polynomials of first degree. To get the approximative values of the state variables we implement the parameters into a integration scheme of Runge-Kutta type. Finally for the optimization the integration scheme directly is combined with a nonlinear programming-solver, for instance an SQP-solver. The existence of an optimal solution is assumed. Convergence properties of this method are not considered in this paper, but will be treated in a forthcoming paper</abstract><pub>Gordon and Breach Science Publishers</pub><doi>10.1080/02331939808844420</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0233-1934
ispartof Optimization, 1998-01, Vol.44 (4), p.421-431
issn 0233-1934
1029-4945
language eng
recordid cdi_crossref_primary_10_1080_02331939808844420
source Taylor & Francis Journals Complete
subjects Bolzaproblem
Constaints of the Controls and of the State Variables Respectively
Direct Implementation of the Parameters into a Solver of Runge-Kutta Type
End conditions for the State Variables
Numerical Solution
Optimal Control
Parametrization
title A procedure to solve optimal control problems numerically by parametrization via runge-kutta-methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A01%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20procedure%20to%20solve%20optimal%20control%20problems%20numerically%20by%20parametrization%20via%20runge-kutta-methods&rft.jtitle=Optimization&rft.au=Poppe,%20H.&rft.date=1998-01-01&rft.volume=44&rft.issue=4&rft.spage=421&rft.epage=431&rft.pages=421-431&rft.issn=0233-1934&rft.eissn=1029-4945&rft_id=info:doi/10.1080/02331939808844420&rft_dat=%3Ccrossref_infor%3E10_1080_02331939808844420%3C/crossref_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true