Higher Dimensional Nonlinear Regression-A Statistical Use of the Riemannian Curvature Tensor
Results presented in previous authors papers are extended from the case of a low dimension of the parameter to the case of an arbitrary dimension. In particular, for arbitrary nonlinear regression models with normal errors, we present in an explicit form the "almost exact" density of the m...
Gespeichert in:
Veröffentlicht in: | Statistics (Berlin, DDR) DDR), 1993-01, Vol.25 (1), p.17-25 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25 |
---|---|
container_issue | 1 |
container_start_page | 17 |
container_title | Statistics (Berlin, DDR) |
container_volume | 25 |
creator | Pázman, Andrej |
description | Results presented in previous authors papers are extended from the case of a low dimension of the parameter to the case of an arbitrary dimension. In particular, for arbitrary nonlinear regression models with normal errors, we present in an explicit form the "almost exact" density of the maximum likelihood estimator. It is a better approximation than the one obtained by the saddle-point method. In all obtained results the Riemannian curvature tensor is of great importance. |
doi_str_mv | 10.1080/02331889308802428 |
format | Article |
fullrecord | <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_02331889308802428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_02331889308802428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-7331d1891878819efdbeeb4d3ce82c1ad1b3ab5b29a084c441834a1d91cdda3c3</originalsourceid><addsrcrecordid>eNp1kF9LwzAUxYMoOKcfwLd8gWpuU-0N-DLmnwlDYW5vQrlN0i3SJpJ0yr69HfNNfDpwz_kdLoexSxBXIFBci1xKQFRSIIq8yPGIjUDkKisUiGM22vvZEMBTdpbShxDiVspyxN5nbr2xkd-7zvrkgqeWvwTfOm8p8oVdR5v252zC33rqXeqdHiKrZHloeL-xfOFsR9478ny6jV_Ub6Ply6EsxHN20lCb7MWvjtnq8WE5nWXz16fn6WSe6Vxhn5XD6wZQAZaIoGxjamvrwkhtMddABmpJ9U2dKxJY6KIAlAWBUaCNIanlmMGhV8eQUrRN9RldR3FXgaj281R_5hmYuwPjfBNiR98htqbqadeG2ETy2qVK_o__AJpca-o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Higher Dimensional Nonlinear Regression-A Statistical Use of the Riemannian Curvature Tensor</title><source>Taylor & Francis:Master (3349 titles)</source><creator>Pázman, Andrej</creator><creatorcontrib>Pázman, Andrej</creatorcontrib><description>Results presented in previous authors papers are extended from the case of a low dimension of the parameter to the case of an arbitrary dimension. In particular, for arbitrary nonlinear regression models with normal errors, we present in an explicit form the "almost exact" density of the maximum likelihood estimator. It is a better approximation than the one obtained by the saddle-point method. In all obtained results the Riemannian curvature tensor is of great importance.</description><identifier>ISSN: 0233-1888</identifier><identifier>EISSN: 1029-4910</identifier><identifier>DOI: 10.1080/02331889308802428</identifier><language>eng</language><publisher>Gordon & Breach Science Publishers</publisher><subject>AMS 1980 subject classification ; curvature tensor ; distribution of estimators ; maximum likelihood ; Nonlinear regression</subject><ispartof>Statistics (Berlin, DDR), 1993-01, Vol.25 (1), p.17-25</ispartof><rights>Copyright Taylor & Francis Group, LLC 1993</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-7331d1891878819efdbeeb4d3ce82c1ad1b3ab5b29a084c441834a1d91cdda3c3</citedby><cites>FETCH-LOGICAL-c298t-7331d1891878819efdbeeb4d3ce82c1ad1b3ab5b29a084c441834a1d91cdda3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/02331889308802428$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/02331889308802428$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids></links><search><creatorcontrib>Pázman, Andrej</creatorcontrib><title>Higher Dimensional Nonlinear Regression-A Statistical Use of the Riemannian Curvature Tensor</title><title>Statistics (Berlin, DDR)</title><description>Results presented in previous authors papers are extended from the case of a low dimension of the parameter to the case of an arbitrary dimension. In particular, for arbitrary nonlinear regression models with normal errors, we present in an explicit form the "almost exact" density of the maximum likelihood estimator. It is a better approximation than the one obtained by the saddle-point method. In all obtained results the Riemannian curvature tensor is of great importance.</description><subject>AMS 1980 subject classification</subject><subject>curvature tensor</subject><subject>distribution of estimators</subject><subject>maximum likelihood</subject><subject>Nonlinear regression</subject><issn>0233-1888</issn><issn>1029-4910</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp1kF9LwzAUxYMoOKcfwLd8gWpuU-0N-DLmnwlDYW5vQrlN0i3SJpJ0yr69HfNNfDpwz_kdLoexSxBXIFBci1xKQFRSIIq8yPGIjUDkKisUiGM22vvZEMBTdpbShxDiVspyxN5nbr2xkd-7zvrkgqeWvwTfOm8p8oVdR5v252zC33rqXeqdHiKrZHloeL-xfOFsR9478ny6jV_Ub6Ply6EsxHN20lCb7MWvjtnq8WE5nWXz16fn6WSe6Vxhn5XD6wZQAZaIoGxjamvrwkhtMddABmpJ9U2dKxJY6KIAlAWBUaCNIanlmMGhV8eQUrRN9RldR3FXgaj281R_5hmYuwPjfBNiR98htqbqadeG2ETy2qVK_o__AJpca-o</recordid><startdate>19930101</startdate><enddate>19930101</enddate><creator>Pázman, Andrej</creator><general>Gordon & Breach Science Publishers</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19930101</creationdate><title>Higher Dimensional Nonlinear Regression-A Statistical Use of the Riemannian Curvature Tensor</title><author>Pázman, Andrej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-7331d1891878819efdbeeb4d3ce82c1ad1b3ab5b29a084c441834a1d91cdda3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>AMS 1980 subject classification</topic><topic>curvature tensor</topic><topic>distribution of estimators</topic><topic>maximum likelihood</topic><topic>Nonlinear regression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pázman, Andrej</creatorcontrib><collection>CrossRef</collection><jtitle>Statistics (Berlin, DDR)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pázman, Andrej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Higher Dimensional Nonlinear Regression-A Statistical Use of the Riemannian Curvature Tensor</atitle><jtitle>Statistics (Berlin, DDR)</jtitle><date>1993-01-01</date><risdate>1993</risdate><volume>25</volume><issue>1</issue><spage>17</spage><epage>25</epage><pages>17-25</pages><issn>0233-1888</issn><eissn>1029-4910</eissn><abstract>Results presented in previous authors papers are extended from the case of a low dimension of the parameter to the case of an arbitrary dimension. In particular, for arbitrary nonlinear regression models with normal errors, we present in an explicit form the "almost exact" density of the maximum likelihood estimator. It is a better approximation than the one obtained by the saddle-point method. In all obtained results the Riemannian curvature tensor is of great importance.</abstract><pub>Gordon & Breach Science Publishers</pub><doi>10.1080/02331889308802428</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0233-1888 |
ispartof | Statistics (Berlin, DDR), 1993-01, Vol.25 (1), p.17-25 |
issn | 0233-1888 1029-4910 |
language | eng |
recordid | cdi_crossref_primary_10_1080_02331889308802428 |
source | Taylor & Francis:Master (3349 titles) |
subjects | AMS 1980 subject classification curvature tensor distribution of estimators maximum likelihood Nonlinear regression |
title | Higher Dimensional Nonlinear Regression-A Statistical Use of the Riemannian Curvature Tensor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A01%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Higher%20Dimensional%20Nonlinear%20Regression-A%20Statistical%20Use%20of%20the%20Riemannian%20Curvature%20Tensor&rft.jtitle=Statistics%20(Berlin,%20DDR)&rft.au=P%C3%A1zman,%20Andrej&rft.date=1993-01-01&rft.volume=25&rft.issue=1&rft.spage=17&rft.epage=25&rft.pages=17-25&rft.issn=0233-1888&rft.eissn=1029-4910&rft_id=info:doi/10.1080/02331889308802428&rft_dat=%3Ccrossref_infor%3E10_1080_02331889308802428%3C/crossref_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |