Higher Dimensional Nonlinear Regression-A Statistical Use of the Riemannian Curvature Tensor

Results presented in previous authors papers are extended from the case of a low dimension of the parameter to the case of an arbitrary dimension. In particular, for arbitrary nonlinear regression models with normal errors, we present in an explicit form the "almost exact" density of the m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics (Berlin, DDR) DDR), 1993-01, Vol.25 (1), p.17-25
1. Verfasser: Pázman, Andrej
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25
container_issue 1
container_start_page 17
container_title Statistics (Berlin, DDR)
container_volume 25
creator Pázman, Andrej
description Results presented in previous authors papers are extended from the case of a low dimension of the parameter to the case of an arbitrary dimension. In particular, for arbitrary nonlinear regression models with normal errors, we present in an explicit form the "almost exact" density of the maximum likelihood estimator. It is a better approximation than the one obtained by the saddle-point method. In all obtained results the Riemannian curvature tensor is of great importance.
doi_str_mv 10.1080/02331889308802428
format Article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_02331889308802428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_02331889308802428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-7331d1891878819efdbeeb4d3ce82c1ad1b3ab5b29a084c441834a1d91cdda3c3</originalsourceid><addsrcrecordid>eNp1kF9LwzAUxYMoOKcfwLd8gWpuU-0N-DLmnwlDYW5vQrlN0i3SJpJ0yr69HfNNfDpwz_kdLoexSxBXIFBci1xKQFRSIIq8yPGIjUDkKisUiGM22vvZEMBTdpbShxDiVspyxN5nbr2xkd-7zvrkgqeWvwTfOm8p8oVdR5v252zC33rqXeqdHiKrZHloeL-xfOFsR9478ny6jV_Ub6Ply6EsxHN20lCb7MWvjtnq8WE5nWXz16fn6WSe6Vxhn5XD6wZQAZaIoGxjamvrwkhtMddABmpJ9U2dKxJY6KIAlAWBUaCNIanlmMGhV8eQUrRN9RldR3FXgaj281R_5hmYuwPjfBNiR98htqbqadeG2ETy2qVK_o__AJpca-o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Higher Dimensional Nonlinear Regression-A Statistical Use of the Riemannian Curvature Tensor</title><source>Taylor &amp; Francis:Master (3349 titles)</source><creator>Pázman, Andrej</creator><creatorcontrib>Pázman, Andrej</creatorcontrib><description>Results presented in previous authors papers are extended from the case of a low dimension of the parameter to the case of an arbitrary dimension. In particular, for arbitrary nonlinear regression models with normal errors, we present in an explicit form the "almost exact" density of the maximum likelihood estimator. It is a better approximation than the one obtained by the saddle-point method. In all obtained results the Riemannian curvature tensor is of great importance.</description><identifier>ISSN: 0233-1888</identifier><identifier>EISSN: 1029-4910</identifier><identifier>DOI: 10.1080/02331889308802428</identifier><language>eng</language><publisher>Gordon &amp; Breach Science Publishers</publisher><subject>AMS 1980 subject classification ; curvature tensor ; distribution of estimators ; maximum likelihood ; Nonlinear regression</subject><ispartof>Statistics (Berlin, DDR), 1993-01, Vol.25 (1), p.17-25</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1993</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-7331d1891878819efdbeeb4d3ce82c1ad1b3ab5b29a084c441834a1d91cdda3c3</citedby><cites>FETCH-LOGICAL-c298t-7331d1891878819efdbeeb4d3ce82c1ad1b3ab5b29a084c441834a1d91cdda3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/02331889308802428$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/02331889308802428$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids></links><search><creatorcontrib>Pázman, Andrej</creatorcontrib><title>Higher Dimensional Nonlinear Regression-A Statistical Use of the Riemannian Curvature Tensor</title><title>Statistics (Berlin, DDR)</title><description>Results presented in previous authors papers are extended from the case of a low dimension of the parameter to the case of an arbitrary dimension. In particular, for arbitrary nonlinear regression models with normal errors, we present in an explicit form the "almost exact" density of the maximum likelihood estimator. It is a better approximation than the one obtained by the saddle-point method. In all obtained results the Riemannian curvature tensor is of great importance.</description><subject>AMS 1980 subject classification</subject><subject>curvature tensor</subject><subject>distribution of estimators</subject><subject>maximum likelihood</subject><subject>Nonlinear regression</subject><issn>0233-1888</issn><issn>1029-4910</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp1kF9LwzAUxYMoOKcfwLd8gWpuU-0N-DLmnwlDYW5vQrlN0i3SJpJ0yr69HfNNfDpwz_kdLoexSxBXIFBci1xKQFRSIIq8yPGIjUDkKisUiGM22vvZEMBTdpbShxDiVspyxN5nbr2xkd-7zvrkgqeWvwTfOm8p8oVdR5v252zC33rqXeqdHiKrZHloeL-xfOFsR9478ny6jV_Ub6Ply6EsxHN20lCb7MWvjtnq8WE5nWXz16fn6WSe6Vxhn5XD6wZQAZaIoGxjamvrwkhtMddABmpJ9U2dKxJY6KIAlAWBUaCNIanlmMGhV8eQUrRN9RldR3FXgaj281R_5hmYuwPjfBNiR98htqbqadeG2ETy2qVK_o__AJpca-o</recordid><startdate>19930101</startdate><enddate>19930101</enddate><creator>Pázman, Andrej</creator><general>Gordon &amp; Breach Science Publishers</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19930101</creationdate><title>Higher Dimensional Nonlinear Regression-A Statistical Use of the Riemannian Curvature Tensor</title><author>Pázman, Andrej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-7331d1891878819efdbeeb4d3ce82c1ad1b3ab5b29a084c441834a1d91cdda3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>AMS 1980 subject classification</topic><topic>curvature tensor</topic><topic>distribution of estimators</topic><topic>maximum likelihood</topic><topic>Nonlinear regression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pázman, Andrej</creatorcontrib><collection>CrossRef</collection><jtitle>Statistics (Berlin, DDR)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pázman, Andrej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Higher Dimensional Nonlinear Regression-A Statistical Use of the Riemannian Curvature Tensor</atitle><jtitle>Statistics (Berlin, DDR)</jtitle><date>1993-01-01</date><risdate>1993</risdate><volume>25</volume><issue>1</issue><spage>17</spage><epage>25</epage><pages>17-25</pages><issn>0233-1888</issn><eissn>1029-4910</eissn><abstract>Results presented in previous authors papers are extended from the case of a low dimension of the parameter to the case of an arbitrary dimension. In particular, for arbitrary nonlinear regression models with normal errors, we present in an explicit form the "almost exact" density of the maximum likelihood estimator. It is a better approximation than the one obtained by the saddle-point method. In all obtained results the Riemannian curvature tensor is of great importance.</abstract><pub>Gordon &amp; Breach Science Publishers</pub><doi>10.1080/02331889308802428</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0233-1888
ispartof Statistics (Berlin, DDR), 1993-01, Vol.25 (1), p.17-25
issn 0233-1888
1029-4910
language eng
recordid cdi_crossref_primary_10_1080_02331889308802428
source Taylor & Francis:Master (3349 titles)
subjects AMS 1980 subject classification
curvature tensor
distribution of estimators
maximum likelihood
Nonlinear regression
title Higher Dimensional Nonlinear Regression-A Statistical Use of the Riemannian Curvature Tensor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A01%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Higher%20Dimensional%20Nonlinear%20Regression-A%20Statistical%20Use%20of%20the%20Riemannian%20Curvature%20Tensor&rft.jtitle=Statistics%20(Berlin,%20DDR)&rft.au=P%C3%A1zman,%20Andrej&rft.date=1993-01-01&rft.volume=25&rft.issue=1&rft.spage=17&rft.epage=25&rft.pages=17-25&rft.issn=0233-1888&rft.eissn=1029-4910&rft_id=info:doi/10.1080/02331889308802428&rft_dat=%3Ccrossref_infor%3E10_1080_02331889308802428%3C/crossref_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true