Discrete approximations of minimization problems. II. Applications

In the first part of this paper [8] we have provided a number of theoretical results concerning the convergence of the infima and of (approximate) solutions of a sequence of minimization problems. In this paper we apply these results to a variety of special problems. Applications are various minimum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical functional analysis and optimization 1990-01, Vol.11 (7-8), p.721-761
Hauptverfasser: Grigorieff, R.D., Reemtsen, R.M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 761
container_issue 7-8
container_start_page 721
container_title Numerical functional analysis and optimization
container_volume 11
creator Grigorieff, R.D.
Reemtsen, R.M.
description In the first part of this paper [8] we have provided a number of theoretical results concerning the convergence of the infima and of (approximate) solutions of a sequence of minimization problems. In this paper we apply these results to a variety of special problems. Applications are various minimum norm problems, semiinfinite programming problems, the regularization by singular perturbation, and the discretization by nonconforming finite elements.
doi_str_mv 10.1080/01630569008816399
format Article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_01630569008816399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_01630569008816399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c213t-4f61b528a3342f0ee310bcec296b00ad7278b66ba03900fd066fe316758f76d03</originalsourceid><addsrcrecordid>eNp1kM9KxDAQxoMoWFcfwFtfoHWStGkKXtb1X2HBi55DkiYQaZuSFHR9erPWm3iaYb7fN8x8CF1jKDFwuAHMKNSsBeA8tW17gjJcU1KQijWnKDvqRQLoObqI8R0AKGl5hu7uXdTBLCaX8xz8pxvl4vwUc2_z0U1udF8_gzyJajBjLPOuK_PtPA9Or-glOrNyiObqt27Q2-PD6-652L88dbvtvtAE06WoLMOqJlxSWhELxlAMShtNWqYAZN-QhivGlASavrA9MGYTw5qa24b1QDcIr3t18DEGY8Uc0rnhIDCIYwjiTwjJc7t63GR9GOWHD0MvFnkYfLBBTtpFQf-3fwMNyWGv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Discrete approximations of minimization problems. II. Applications</title><source>Taylor &amp; Francis Journals Complete</source><creator>Grigorieff, R.D. ; Reemtsen, R.M.</creator><creatorcontrib>Grigorieff, R.D. ; Reemtsen, R.M.</creatorcontrib><description>In the first part of this paper [8] we have provided a number of theoretical results concerning the convergence of the infima and of (approximate) solutions of a sequence of minimization problems. In this paper we apply these results to a variety of special problems. Applications are various minimum norm problems, semiinfinite programming problems, the regularization by singular perturbation, and the discretization by nonconforming finite elements.</description><identifier>ISSN: 0163-0563</identifier><identifier>EISSN: 1532-2467</identifier><identifier>DOI: 10.1080/01630569008816399</identifier><language>eng</language><publisher>Marcel Dekker, Inc</publisher><ispartof>Numerical functional analysis and optimization, 1990-01, Vol.11 (7-8), p.721-761</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1990</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c213t-4f61b528a3342f0ee310bcec296b00ad7278b66ba03900fd066fe316758f76d03</citedby><cites>FETCH-LOGICAL-c213t-4f61b528a3342f0ee310bcec296b00ad7278b66ba03900fd066fe316758f76d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/01630569008816399$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/01630569008816399$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,60436</link.rule.ids></links><search><creatorcontrib>Grigorieff, R.D.</creatorcontrib><creatorcontrib>Reemtsen, R.M.</creatorcontrib><title>Discrete approximations of minimization problems. II. Applications</title><title>Numerical functional analysis and optimization</title><description>In the first part of this paper [8] we have provided a number of theoretical results concerning the convergence of the infima and of (approximate) solutions of a sequence of minimization problems. In this paper we apply these results to a variety of special problems. Applications are various minimum norm problems, semiinfinite programming problems, the regularization by singular perturbation, and the discretization by nonconforming finite elements.</description><issn>0163-0563</issn><issn>1532-2467</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNp1kM9KxDAQxoMoWFcfwFtfoHWStGkKXtb1X2HBi55DkiYQaZuSFHR9erPWm3iaYb7fN8x8CF1jKDFwuAHMKNSsBeA8tW17gjJcU1KQijWnKDvqRQLoObqI8R0AKGl5hu7uXdTBLCaX8xz8pxvl4vwUc2_z0U1udF8_gzyJajBjLPOuK_PtPA9Or-glOrNyiObqt27Q2-PD6-652L88dbvtvtAE06WoLMOqJlxSWhELxlAMShtNWqYAZN-QhivGlASavrA9MGYTw5qa24b1QDcIr3t18DEGY8Uc0rnhIDCIYwjiTwjJc7t63GR9GOWHD0MvFnkYfLBBTtpFQf-3fwMNyWGv</recordid><startdate>19900101</startdate><enddate>19900101</enddate><creator>Grigorieff, R.D.</creator><creator>Reemtsen, R.M.</creator><general>Marcel Dekker, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19900101</creationdate><title>Discrete approximations of minimization problems. II. Applications</title><author>Grigorieff, R.D. ; Reemtsen, R.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c213t-4f61b528a3342f0ee310bcec296b00ad7278b66ba03900fd066fe316758f76d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grigorieff, R.D.</creatorcontrib><creatorcontrib>Reemtsen, R.M.</creatorcontrib><collection>CrossRef</collection><jtitle>Numerical functional analysis and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grigorieff, R.D.</au><au>Reemtsen, R.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete approximations of minimization problems. II. Applications</atitle><jtitle>Numerical functional analysis and optimization</jtitle><date>1990-01-01</date><risdate>1990</risdate><volume>11</volume><issue>7-8</issue><spage>721</spage><epage>761</epage><pages>721-761</pages><issn>0163-0563</issn><eissn>1532-2467</eissn><abstract>In the first part of this paper [8] we have provided a number of theoretical results concerning the convergence of the infima and of (approximate) solutions of a sequence of minimization problems. In this paper we apply these results to a variety of special problems. Applications are various minimum norm problems, semiinfinite programming problems, the regularization by singular perturbation, and the discretization by nonconforming finite elements.</abstract><pub>Marcel Dekker, Inc</pub><doi>10.1080/01630569008816399</doi><tpages>41</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0163-0563
ispartof Numerical functional analysis and optimization, 1990-01, Vol.11 (7-8), p.721-761
issn 0163-0563
1532-2467
language eng
recordid cdi_crossref_primary_10_1080_01630569008816399
source Taylor & Francis Journals Complete
title Discrete approximations of minimization problems. II. Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A34%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20approximations%20of%20minimization%20problems.%20II.%20Applications&rft.jtitle=Numerical%20functional%20analysis%20and%20optimization&rft.au=Grigorieff,%20R.D.&rft.date=1990-01-01&rft.volume=11&rft.issue=7-8&rft.spage=721&rft.epage=761&rft.pages=721-761&rft.issn=0163-0563&rft.eissn=1532-2467&rft_id=info:doi/10.1080/01630569008816399&rft_dat=%3Ccrossref_infor%3E10_1080_01630569008816399%3C/crossref_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true