A Nonstationary Soft Partitioned Gaussian Process Model via Random Spanning Trees

There has been a long-standing challenge in developing locally stationary Gaussian process models concerning how to obtain flexible partitions and make predictions near boundaries. In this work, we develop a new class of locally stationary stochastic processes, where local partitions are modeled by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 2024-07, Vol.119 (547), p.2105-2116
Hauptverfasser: Luo, Zhao Tang, Sang, Huiyan, Mallick, Bani
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!