On Semiparametrically Dynamic Functional-Coefficient Autoregressive Spatio-Temporal Models with Irregular Location Wide Nonstationarity
Nonlinear dynamic modeling of spatio-temporal data is often a challenge, especially due to irregularly observed locations and location-wide nonstationarity. In this article we propose a semiparametric family of Dynamic Functional-coefficient Autoregressive Spatio-Temporal (DyFAST) models to address...
Gespeichert in:
Veröffentlicht in: | Journal of the American Statistical Association 2024-04, Vol.119 (546), p.1032-1043 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1043 |
---|---|
container_issue | 546 |
container_start_page | 1032 |
container_title | Journal of the American Statistical Association |
container_volume | 119 |
creator | Lu, Zudi Ren, Xiaohang Zhang, Rongmao |
description | Nonlinear dynamic modeling of spatio-temporal data is often a challenge, especially due to irregularly observed locations and location-wide nonstationarity. In this article we propose a semiparametric family of Dynamic Functional-coefficient Autoregressive Spatio-Temporal (DyFAST) models to address the difficulties. We specify the autoregressive smoothing coefficients depending dynamically on both a concerned regime and location so that the models can characterize not only the dynamic regime-switching nature but also the location-wide nonstationarity in real data. Different smoothing schemes are then proposed to model the dynamic neighboring-time interaction effects with irregular locations incorporated by (spatial) weight matrices. The first scheme popular in econometrics supposes that the weight matrix is pre-specified. We show that locally optimal bandwidths by a greedy idea popular in machine learning should be cautiously applied. Moreover, many weight matrices can be generated differently by data location features. Model selection is popular, but may suffer from loss of different candidate features. Our second scheme is thus to suggest a weight matrix fusion to let data combine or select the candidates with estimation done simultaneously. Both theoretical properties and Monte Carlo simulations are investigated. The empirical application to an EU energy market dataset further demonstrates the usefulness of our DyFAST models.
Supplementary materials
for this article are available online. |
doi_str_mv | 10.1080/01621459.2022.2161386 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_01621459_2022_2161386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3073447411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-f654562c367e30b99379f812664383647792b2d0a9981ebf14328c4e1bb095b03</originalsourceid><addsrcrecordid>eNp9kM9u1DAQhy1EJZbSR0CyxDmL_8V2blQLLZUWemircrMcrw2uHDvYTqs8Aa9N0i1X5jIa6fvNaD4A3mO0xUiijwhzglnbbQkiZEswx1TyV2CDWyoaItiP12CzMs0KvQFvS3lASwkpN-DPdYQ3dvCjznqwNXujQ5jh5znqwRt4MUVTfYo6NLtknfPG21jh-VRTtj-zLcU_Wngz6gVqbu0wpqwD_JYONhT45OsveJUXcAo6w30yKxbhvT9Y-D3FUp9nnX2d34ETp0OxZy_9FNxdfLndfW3215dXu_N9YxiWtXG8ZS0nhnJhKeq7jorOSUw4Z1RSzoToSE8OSHedxLZ3mFEiDbO471HX9oiegg_HvWNOvydbqnpIU17-K4oiQRkTDOOFao-UyamUbJ0asx90nhVGanWu_jlXq3P14nzJfTrmfHQpD_op5XBQVc8hZZd1NH458_8VfwE-gook</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3073447411</pqid></control><display><type>article</type><title>On Semiparametrically Dynamic Functional-Coefficient Autoregressive Spatio-Temporal Models with Irregular Location Wide Nonstationarity</title><source>Taylor & Francis Journals Complete</source><creator>Lu, Zudi ; Ren, Xiaohang ; Zhang, Rongmao</creator><creatorcontrib>Lu, Zudi ; Ren, Xiaohang ; Zhang, Rongmao</creatorcontrib><description>Nonlinear dynamic modeling of spatio-temporal data is often a challenge, especially due to irregularly observed locations and location-wide nonstationarity. In this article we propose a semiparametric family of Dynamic Functional-coefficient Autoregressive Spatio-Temporal (DyFAST) models to address the difficulties. We specify the autoregressive smoothing coefficients depending dynamically on both a concerned regime and location so that the models can characterize not only the dynamic regime-switching nature but also the location-wide nonstationarity in real data. Different smoothing schemes are then proposed to model the dynamic neighboring-time interaction effects with irregular locations incorporated by (spatial) weight matrices. The first scheme popular in econometrics supposes that the weight matrix is pre-specified. We show that locally optimal bandwidths by a greedy idea popular in machine learning should be cautiously applied. Moreover, many weight matrices can be generated differently by data location features. Model selection is popular, but may suffer from loss of different candidate features. Our second scheme is thus to suggest a weight matrix fusion to let data combine or select the candidates with estimation done simultaneously. Both theoretical properties and Monte Carlo simulations are investigated. The empirical application to an EU energy market dataset further demonstrates the usefulness of our DyFAST models.
Supplementary materials
for this article are available online.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.2022.2161386</identifier><language>eng</language><publisher>Alexandria: Taylor & Francis</publisher><subject>Candidates ; Data smoothing ; Dynamic functional-coefficient autoregression ; Dynamic models ; Econometrics ; Irregular location wide nonstationarity ; Local linear smoothing ; Machine learning ; Matrices ; Monte Carlo simulation ; Nonlinear dynamics ; Nonstationarity ; Smoothing ; Spatial weight matrix ; Spatio-temporal data ; Spatiotemporal data ; Statistics ; Usefulness</subject><ispartof>Journal of the American Statistical Association, 2024-04, Vol.119 (546), p.1032-1043</ispartof><rights>2023 The Author(s). Published with license by Taylor & Francis Group, LLC. 2023</rights><rights>2023 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-f654562c367e30b99379f812664383647792b2d0a9981ebf14328c4e1bb095b03</citedby><cites>FETCH-LOGICAL-c418t-f654562c367e30b99379f812664383647792b2d0a9981ebf14328c4e1bb095b03</cites><orcidid>0000-0002-9097-580X ; 0000-0003-2313-0564 ; 0000-0002-3614-3818</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/01621459.2022.2161386$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/01621459.2022.2161386$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,59646,60435</link.rule.ids></links><search><creatorcontrib>Lu, Zudi</creatorcontrib><creatorcontrib>Ren, Xiaohang</creatorcontrib><creatorcontrib>Zhang, Rongmao</creatorcontrib><title>On Semiparametrically Dynamic Functional-Coefficient Autoregressive Spatio-Temporal Models with Irregular Location Wide Nonstationarity</title><title>Journal of the American Statistical Association</title><description>Nonlinear dynamic modeling of spatio-temporal data is often a challenge, especially due to irregularly observed locations and location-wide nonstationarity. In this article we propose a semiparametric family of Dynamic Functional-coefficient Autoregressive Spatio-Temporal (DyFAST) models to address the difficulties. We specify the autoregressive smoothing coefficients depending dynamically on both a concerned regime and location so that the models can characterize not only the dynamic regime-switching nature but also the location-wide nonstationarity in real data. Different smoothing schemes are then proposed to model the dynamic neighboring-time interaction effects with irregular locations incorporated by (spatial) weight matrices. The first scheme popular in econometrics supposes that the weight matrix is pre-specified. We show that locally optimal bandwidths by a greedy idea popular in machine learning should be cautiously applied. Moreover, many weight matrices can be generated differently by data location features. Model selection is popular, but may suffer from loss of different candidate features. Our second scheme is thus to suggest a weight matrix fusion to let data combine or select the candidates with estimation done simultaneously. Both theoretical properties and Monte Carlo simulations are investigated. The empirical application to an EU energy market dataset further demonstrates the usefulness of our DyFAST models.
Supplementary materials
for this article are available online.</description><subject>Candidates</subject><subject>Data smoothing</subject><subject>Dynamic functional-coefficient autoregression</subject><subject>Dynamic models</subject><subject>Econometrics</subject><subject>Irregular location wide nonstationarity</subject><subject>Local linear smoothing</subject><subject>Machine learning</subject><subject>Matrices</subject><subject>Monte Carlo simulation</subject><subject>Nonlinear dynamics</subject><subject>Nonstationarity</subject><subject>Smoothing</subject><subject>Spatial weight matrix</subject><subject>Spatio-temporal data</subject><subject>Spatiotemporal data</subject><subject>Statistics</subject><subject>Usefulness</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNp9kM9u1DAQhy1EJZbSR0CyxDmL_8V2blQLLZUWemircrMcrw2uHDvYTqs8Aa9N0i1X5jIa6fvNaD4A3mO0xUiijwhzglnbbQkiZEswx1TyV2CDWyoaItiP12CzMs0KvQFvS3lASwkpN-DPdYQ3dvCjznqwNXujQ5jh5znqwRt4MUVTfYo6NLtknfPG21jh-VRTtj-zLcU_Wngz6gVqbu0wpqwD_JYONhT45OsveJUXcAo6w30yKxbhvT9Y-D3FUp9nnX2d34ETp0OxZy_9FNxdfLndfW3215dXu_N9YxiWtXG8ZS0nhnJhKeq7jorOSUw4Z1RSzoToSE8OSHedxLZ3mFEiDbO471HX9oiegg_HvWNOvydbqnpIU17-K4oiQRkTDOOFao-UyamUbJ0asx90nhVGanWu_jlXq3P14nzJfTrmfHQpD_op5XBQVc8hZZd1NH458_8VfwE-gook</recordid><startdate>20240402</startdate><enddate>20240402</enddate><creator>Lu, Zudi</creator><creator>Ren, Xiaohang</creator><creator>Zhang, Rongmao</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0002-9097-580X</orcidid><orcidid>https://orcid.org/0000-0003-2313-0564</orcidid><orcidid>https://orcid.org/0000-0002-3614-3818</orcidid></search><sort><creationdate>20240402</creationdate><title>On Semiparametrically Dynamic Functional-Coefficient Autoregressive Spatio-Temporal Models with Irregular Location Wide Nonstationarity</title><author>Lu, Zudi ; Ren, Xiaohang ; Zhang, Rongmao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-f654562c367e30b99379f812664383647792b2d0a9981ebf14328c4e1bb095b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Candidates</topic><topic>Data smoothing</topic><topic>Dynamic functional-coefficient autoregression</topic><topic>Dynamic models</topic><topic>Econometrics</topic><topic>Irregular location wide nonstationarity</topic><topic>Local linear smoothing</topic><topic>Machine learning</topic><topic>Matrices</topic><topic>Monte Carlo simulation</topic><topic>Nonlinear dynamics</topic><topic>Nonstationarity</topic><topic>Smoothing</topic><topic>Spatial weight matrix</topic><topic>Spatio-temporal data</topic><topic>Spatiotemporal data</topic><topic>Statistics</topic><topic>Usefulness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Zudi</creatorcontrib><creatorcontrib>Ren, Xiaohang</creatorcontrib><creatorcontrib>Zhang, Rongmao</creatorcontrib><collection>Taylor & Francis Open Access</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Zudi</au><au>Ren, Xiaohang</au><au>Zhang, Rongmao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Semiparametrically Dynamic Functional-Coefficient Autoregressive Spatio-Temporal Models with Irregular Location Wide Nonstationarity</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>2024-04-02</date><risdate>2024</risdate><volume>119</volume><issue>546</issue><spage>1032</spage><epage>1043</epage><pages>1032-1043</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><abstract>Nonlinear dynamic modeling of spatio-temporal data is often a challenge, especially due to irregularly observed locations and location-wide nonstationarity. In this article we propose a semiparametric family of Dynamic Functional-coefficient Autoregressive Spatio-Temporal (DyFAST) models to address the difficulties. We specify the autoregressive smoothing coefficients depending dynamically on both a concerned regime and location so that the models can characterize not only the dynamic regime-switching nature but also the location-wide nonstationarity in real data. Different smoothing schemes are then proposed to model the dynamic neighboring-time interaction effects with irregular locations incorporated by (spatial) weight matrices. The first scheme popular in econometrics supposes that the weight matrix is pre-specified. We show that locally optimal bandwidths by a greedy idea popular in machine learning should be cautiously applied. Moreover, many weight matrices can be generated differently by data location features. Model selection is popular, but may suffer from loss of different candidate features. Our second scheme is thus to suggest a weight matrix fusion to let data combine or select the candidates with estimation done simultaneously. Both theoretical properties and Monte Carlo simulations are investigated. The empirical application to an EU energy market dataset further demonstrates the usefulness of our DyFAST models.
Supplementary materials
for this article are available online.</abstract><cop>Alexandria</cop><pub>Taylor & Francis</pub><doi>10.1080/01621459.2022.2161386</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9097-580X</orcidid><orcidid>https://orcid.org/0000-0003-2313-0564</orcidid><orcidid>https://orcid.org/0000-0002-3614-3818</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-1459 |
ispartof | Journal of the American Statistical Association, 2024-04, Vol.119 (546), p.1032-1043 |
issn | 0162-1459 1537-274X |
language | eng |
recordid | cdi_crossref_primary_10_1080_01621459_2022_2161386 |
source | Taylor & Francis Journals Complete |
subjects | Candidates Data smoothing Dynamic functional-coefficient autoregression Dynamic models Econometrics Irregular location wide nonstationarity Local linear smoothing Machine learning Matrices Monte Carlo simulation Nonlinear dynamics Nonstationarity Smoothing Spatial weight matrix Spatio-temporal data Spatiotemporal data Statistics Usefulness |
title | On Semiparametrically Dynamic Functional-Coefficient Autoregressive Spatio-Temporal Models with Irregular Location Wide Nonstationarity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A09%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Semiparametrically%20Dynamic%20Functional-Coefficient%20Autoregressive%20Spatio-Temporal%20Models%20with%20Irregular%20Location%20Wide%20Nonstationarity&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Lu,%20Zudi&rft.date=2024-04-02&rft.volume=119&rft.issue=546&rft.spage=1032&rft.epage=1043&rft.pages=1032-1043&rft.issn=0162-1459&rft.eissn=1537-274X&rft_id=info:doi/10.1080/01621459.2022.2161386&rft_dat=%3Cproquest_cross%3E3073447411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3073447411&rft_id=info:pmid/&rfr_iscdi=true |