Assessing Partial Association Between Ordinal Variables: Quantification, Visualization, and Hypothesis Testing

Partial association refers to the relationship between variables Y 1 , Y 2 , ... , Y K while adjusting for a set of covariates X = { X 1 , ... , X p } . To assess such an association when Y k 's are recorded on ordinal scales, a classical approach is to use partial correlation between the laten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 2021-04, Vol.116 (534), p.955-968
Hauptverfasser: Liu, Dungang, Li, Shaobo, Yu, Yan, Moustaki, Irini
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 968
container_issue 534
container_start_page 955
container_title Journal of the American Statistical Association
container_volume 116
creator Liu, Dungang
Li, Shaobo
Yu, Yan
Moustaki, Irini
description Partial association refers to the relationship between variables Y 1 , Y 2 , ... , Y K while adjusting for a set of covariates X = { X 1 , ... , X p } . To assess such an association when Y k 's are recorded on ordinal scales, a classical approach is to use partial correlation between the latent continuous variables. This so-called polychoric correlation is inadequate, as it requires multivariate normality and it only reflects a linear association. We propose a new framework for studying ordinal-ordinal partial association by using Liu-Zhang's surrogate residuals. We justify that conditional on X , Y k , and Y l are independent if and only if their corresponding surrogate residual variables are independent. Based on this result, we develop a general measure ϕ to quantify association strength. As opposed to polychoric correlation, ϕ does not rely on normality or models with the probit link, but instead it broadly applies to models with any link functions. It can capture a nonlinear or even nonmonotonic association. Moreover, the measure ϕ gives rise to a general procedure for testing the hypothesis of partial independence. Our framework also permits visualization tools, such as partial regression plots and three-dimensional P-P plots, to examine the association structure, which is otherwise unfeasible for ordinal data. We stress that the whole set of tools (measures, p-values, and graphics) is developed within a single unified framework, which allows a coherent inference. The analyses of the National Election Study (K = 5) and Big Five Personality Traits (K = 50) demonstrate that our framework leads to a much fuller assessment of partial association and yields deeper insights for domain researchers. Supplementary materials for this article are available online.
doi_str_mv 10.1080/01621459.2020.1796394
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_01621459_2020_1796394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2538950994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-6e44a72a7a6400f524eebf2ad452abf14f3988497c99694c960def7f4ab5bc23</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_QVjw6tYkm_2IJ2vxCwpVKMVbmN1NNGWb1CRLqb_e1Narcxlm5pl3mBehS4JHBFf4BpOCEpbzEcU0tkpeZJwdoQHJszKlJXs_RoMdk-6gU3Tm_RLHKKtqgMzYe-m9Nh_JK7igoUtixzYagrYmuZdhI6VJZq7VJs4W4DTUnfS3yVsPJmilm1_yOllo30Onvw8lmDZ53q5t-JRe-2QufYhHztGJgs7Li0Meovnjw3zynE5nTy-T8TRtGKlCWkjGoKRQQsEwVjllUtaKQstyCrUiTGW8qhgvG84Lzhpe4FaqUjGo87qh2RBd7WXXzn718bRY2t7FB7ygeVbxHHPOIpXvqcZZ751UYu30CtxWECx2zoo_Z8XOWXFwNu7d7fe0UdatYGNd14oA28465cA02ovsf4kfpbqBlw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2538950994</pqid></control><display><type>article</type><title>Assessing Partial Association Between Ordinal Variables: Quantification, Visualization, and Hypothesis Testing</title><source>Access via Taylor &amp; Francis</source><creator>Liu, Dungang ; Li, Shaobo ; Yu, Yan ; Moustaki, Irini</creator><creatorcontrib>Liu, Dungang ; Li, Shaobo ; Yu, Yan ; Moustaki, Irini</creatorcontrib><description>Partial association refers to the relationship between variables Y 1 , Y 2 , ... , Y K while adjusting for a set of covariates X = { X 1 , ... , X p } . To assess such an association when Y k 's are recorded on ordinal scales, a classical approach is to use partial correlation between the latent continuous variables. This so-called polychoric correlation is inadequate, as it requires multivariate normality and it only reflects a linear association. We propose a new framework for studying ordinal-ordinal partial association by using Liu-Zhang's surrogate residuals. We justify that conditional on X , Y k , and Y l are independent if and only if their corresponding surrogate residual variables are independent. Based on this result, we develop a general measure ϕ to quantify association strength. As opposed to polychoric correlation, ϕ does not rely on normality or models with the probit link, but instead it broadly applies to models with any link functions. It can capture a nonlinear or even nonmonotonic association. Moreover, the measure ϕ gives rise to a general procedure for testing the hypothesis of partial independence. Our framework also permits visualization tools, such as partial regression plots and three-dimensional P-P plots, to examine the association structure, which is otherwise unfeasible for ordinal data. We stress that the whole set of tools (measures, p-values, and graphics) is developed within a single unified framework, which allows a coherent inference. The analyses of the National Election Study (K = 5) and Big Five Personality Traits (K = 50) demonstrate that our framework leads to a much fuller assessment of partial association and yields deeper insights for domain researchers. Supplementary materials for this article are available online.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.2020.1796394</identifier><language>eng</language><publisher>Alexandria: Taylor &amp; Francis</publisher><subject>Continuity (mathematics) ; Covariate adjustment ; Elections ; Five factor model ; Hypotheses ; Hypothesis testing ; Independent variables ; Measurement ; Multivariate analysis ; National elections ; Normality ; Ordinal measurement ; Partial regression plot ; Personality traits ; Polychoric correlation ; Rating data ; Regression analysis ; Statistical methods ; Statistics ; Surrogate residual ; Variables ; Visualization</subject><ispartof>Journal of the American Statistical Association, 2021-04, Vol.116 (534), p.955-968</ispartof><rights>2020 American Statistical Association 2020</rights><rights>2020 American Statistical Association</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-6e44a72a7a6400f524eebf2ad452abf14f3988497c99694c960def7f4ab5bc23</citedby><cites>FETCH-LOGICAL-c418t-6e44a72a7a6400f524eebf2ad452abf14f3988497c99694c960def7f4ab5bc23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/01621459.2020.1796394$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/01621459.2020.1796394$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,60436</link.rule.ids></links><search><creatorcontrib>Liu, Dungang</creatorcontrib><creatorcontrib>Li, Shaobo</creatorcontrib><creatorcontrib>Yu, Yan</creatorcontrib><creatorcontrib>Moustaki, Irini</creatorcontrib><title>Assessing Partial Association Between Ordinal Variables: Quantification, Visualization, and Hypothesis Testing</title><title>Journal of the American Statistical Association</title><description>Partial association refers to the relationship between variables Y 1 , Y 2 , ... , Y K while adjusting for a set of covariates X = { X 1 , ... , X p } . To assess such an association when Y k 's are recorded on ordinal scales, a classical approach is to use partial correlation between the latent continuous variables. This so-called polychoric correlation is inadequate, as it requires multivariate normality and it only reflects a linear association. We propose a new framework for studying ordinal-ordinal partial association by using Liu-Zhang's surrogate residuals. We justify that conditional on X , Y k , and Y l are independent if and only if their corresponding surrogate residual variables are independent. Based on this result, we develop a general measure ϕ to quantify association strength. As opposed to polychoric correlation, ϕ does not rely on normality or models with the probit link, but instead it broadly applies to models with any link functions. It can capture a nonlinear or even nonmonotonic association. Moreover, the measure ϕ gives rise to a general procedure for testing the hypothesis of partial independence. Our framework also permits visualization tools, such as partial regression plots and three-dimensional P-P plots, to examine the association structure, which is otherwise unfeasible for ordinal data. We stress that the whole set of tools (measures, p-values, and graphics) is developed within a single unified framework, which allows a coherent inference. The analyses of the National Election Study (K = 5) and Big Five Personality Traits (K = 50) demonstrate that our framework leads to a much fuller assessment of partial association and yields deeper insights for domain researchers. Supplementary materials for this article are available online.</description><subject>Continuity (mathematics)</subject><subject>Covariate adjustment</subject><subject>Elections</subject><subject>Five factor model</subject><subject>Hypotheses</subject><subject>Hypothesis testing</subject><subject>Independent variables</subject><subject>Measurement</subject><subject>Multivariate analysis</subject><subject>National elections</subject><subject>Normality</subject><subject>Ordinal measurement</subject><subject>Partial regression plot</subject><subject>Personality traits</subject><subject>Polychoric correlation</subject><subject>Rating data</subject><subject>Regression analysis</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Surrogate residual</subject><subject>Variables</subject><subject>Visualization</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_QVjw6tYkm_2IJ2vxCwpVKMVbmN1NNGWb1CRLqb_e1Narcxlm5pl3mBehS4JHBFf4BpOCEpbzEcU0tkpeZJwdoQHJszKlJXs_RoMdk-6gU3Tm_RLHKKtqgMzYe-m9Nh_JK7igoUtixzYagrYmuZdhI6VJZq7VJs4W4DTUnfS3yVsPJmilm1_yOllo30Onvw8lmDZ53q5t-JRe-2QufYhHztGJgs7Li0Meovnjw3zynE5nTy-T8TRtGKlCWkjGoKRQQsEwVjllUtaKQstyCrUiTGW8qhgvG84Lzhpe4FaqUjGo87qh2RBd7WXXzn718bRY2t7FB7ygeVbxHHPOIpXvqcZZ751UYu30CtxWECx2zoo_Z8XOWXFwNu7d7fe0UdatYGNd14oA28465cA02ovsf4kfpbqBlw</recordid><startdate>20210403</startdate><enddate>20210403</enddate><creator>Liu, Dungang</creator><creator>Li, Shaobo</creator><creator>Yu, Yan</creator><creator>Moustaki, Irini</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope></search><sort><creationdate>20210403</creationdate><title>Assessing Partial Association Between Ordinal Variables: Quantification, Visualization, and Hypothesis Testing</title><author>Liu, Dungang ; Li, Shaobo ; Yu, Yan ; Moustaki, Irini</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-6e44a72a7a6400f524eebf2ad452abf14f3988497c99694c960def7f4ab5bc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Continuity (mathematics)</topic><topic>Covariate adjustment</topic><topic>Elections</topic><topic>Five factor model</topic><topic>Hypotheses</topic><topic>Hypothesis testing</topic><topic>Independent variables</topic><topic>Measurement</topic><topic>Multivariate analysis</topic><topic>National elections</topic><topic>Normality</topic><topic>Ordinal measurement</topic><topic>Partial regression plot</topic><topic>Personality traits</topic><topic>Polychoric correlation</topic><topic>Rating data</topic><topic>Regression analysis</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Surrogate residual</topic><topic>Variables</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Dungang</creatorcontrib><creatorcontrib>Li, Shaobo</creatorcontrib><creatorcontrib>Yu, Yan</creatorcontrib><creatorcontrib>Moustaki, Irini</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Dungang</au><au>Li, Shaobo</au><au>Yu, Yan</au><au>Moustaki, Irini</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing Partial Association Between Ordinal Variables: Quantification, Visualization, and Hypothesis Testing</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>2021-04-03</date><risdate>2021</risdate><volume>116</volume><issue>534</issue><spage>955</spage><epage>968</epage><pages>955-968</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><abstract>Partial association refers to the relationship between variables Y 1 , Y 2 , ... , Y K while adjusting for a set of covariates X = { X 1 , ... , X p } . To assess such an association when Y k 's are recorded on ordinal scales, a classical approach is to use partial correlation between the latent continuous variables. This so-called polychoric correlation is inadequate, as it requires multivariate normality and it only reflects a linear association. We propose a new framework for studying ordinal-ordinal partial association by using Liu-Zhang's surrogate residuals. We justify that conditional on X , Y k , and Y l are independent if and only if their corresponding surrogate residual variables are independent. Based on this result, we develop a general measure ϕ to quantify association strength. As opposed to polychoric correlation, ϕ does not rely on normality or models with the probit link, but instead it broadly applies to models with any link functions. It can capture a nonlinear or even nonmonotonic association. Moreover, the measure ϕ gives rise to a general procedure for testing the hypothesis of partial independence. Our framework also permits visualization tools, such as partial regression plots and three-dimensional P-P plots, to examine the association structure, which is otherwise unfeasible for ordinal data. We stress that the whole set of tools (measures, p-values, and graphics) is developed within a single unified framework, which allows a coherent inference. The analyses of the National Election Study (K = 5) and Big Five Personality Traits (K = 50) demonstrate that our framework leads to a much fuller assessment of partial association and yields deeper insights for domain researchers. Supplementary materials for this article are available online.</abstract><cop>Alexandria</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/01621459.2020.1796394</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0162-1459
ispartof Journal of the American Statistical Association, 2021-04, Vol.116 (534), p.955-968
issn 0162-1459
1537-274X
language eng
recordid cdi_crossref_primary_10_1080_01621459_2020_1796394
source Access via Taylor & Francis
subjects Continuity (mathematics)
Covariate adjustment
Elections
Five factor model
Hypotheses
Hypothesis testing
Independent variables
Measurement
Multivariate analysis
National elections
Normality
Ordinal measurement
Partial regression plot
Personality traits
Polychoric correlation
Rating data
Regression analysis
Statistical methods
Statistics
Surrogate residual
Variables
Visualization
title Assessing Partial Association Between Ordinal Variables: Quantification, Visualization, and Hypothesis Testing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A56%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20Partial%20Association%20Between%20Ordinal%20Variables:%20Quantification,%20Visualization,%20and%20Hypothesis%20Testing&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Liu,%20Dungang&rft.date=2021-04-03&rft.volume=116&rft.issue=534&rft.spage=955&rft.epage=968&rft.pages=955-968&rft.issn=0162-1459&rft.eissn=1537-274X&rft_id=info:doi/10.1080/01621459.2020.1796394&rft_dat=%3Cproquest_cross%3E2538950994%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2538950994&rft_id=info:pmid/&rfr_iscdi=true