Nonparametric Estimation of Conditional Expectation with Auxiliary Information and Dimension Reduction
Nonparametric estimation of the conditional expectation of an outcome Y given a covariate vector U is of primary importance in many statistical applications such as prediction and personalized medicine. In some problems, there is an additional auxiliary variable Z in the training dataset used to con...
Gespeichert in:
Veröffentlicht in: | Journal of the American Statistical Association 2021-07, Vol.116 (535), p.1346-1357 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1357 |
---|---|
container_issue | 535 |
container_start_page | 1346 |
container_title | Journal of the American Statistical Association |
container_volume | 116 |
creator | Xie, Bingying Shao, Jun |
description | Nonparametric estimation of the conditional expectation
of an outcome Y given a covariate vector U is of primary importance in many statistical applications such as prediction and personalized medicine. In some problems, there is an additional auxiliary variable Z in the training dataset used to construct estimators, but Z is not available for future prediction or selecting patient treatment in personalized medicine. For example, in the training dataset longitudinal outcomes are observed, but only the last outcome Y is concerned in the future prediction or analysis. The longitudinal outcomes other than the last point is then the variable Z that is observed and related with both Y and U. Previous work on how to make use of Z in the estimation of
mainly focused on using Z in the construction of a linear function of U to reduce covariate dimension for better estimation. Using
, we propose a two-step estimation of inner and outer expectations, respectively, with sufficient dimension reduction for kernel estimation in both steps. The information from Z is utilized not only in dimension reduction, but also directly in the estimation. Because of the existence of different ways for dimension reduction, we construct two estimators that may improve the estimator without using Z. The improvements are shown in the convergence rate of estimators as the sample size increases to infinity as well as in the finite sample simulation performance. A real data analysis about the selection of mammography intervention is presented for illustration. |
doi_str_mv | 10.1080/01621459.2020.1713793 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_01621459_2020_1713793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2770817821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-3f68bccd828f9dc20478f0cc8518cfe5e5e6d53db079680174b99aaac2a12cba3</originalsourceid><addsrcrecordid>eNp9UE1Lw0AQXUTBWv0JQsBz6n4k2c3NUqsWioIoeFs2-4Fb0mzc3dDm35uQenXmMMzMe4-ZB8AtggsEGbyHqMAoy8sFhngYUURoSc7ADOWEpphmX-dgNmLSEXQJrkLYwSEoYzNgXl3TCi_2Onork3WIdi-idU3iTLJyjbJjI-pkfWy1jNPqYON3suyOtrbC98mmMc6fWKJRyaPd6yaM3btWnRzn1-DCiDrom1Odg8-n9cfqJd2-PW9Wy20qSVHElJiCVVIqhpkplcQwo8xAKVmOmDQ6H7JQOVEVpGXBIKJZVZZCCIkFwrISZA7uJt3Wu59Oh8h3rvPD_YFjSiFDlGE0oPIJJb0LwWvDWz-87XuOIB8t5X-W8tFSfrJ04D1MPDt9fHC-VjyKvnbeeNFIGzj5X-IXYhV_vA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2770817821</pqid></control><display><type>article</type><title>Nonparametric Estimation of Conditional Expectation with Auxiliary Information and Dimension Reduction</title><source>Taylor & Francis Journals Complete</source><creator>Xie, Bingying ; Shao, Jun</creator><creatorcontrib>Xie, Bingying ; Shao, Jun</creatorcontrib><description>Nonparametric estimation of the conditional expectation
of an outcome Y given a covariate vector U is of primary importance in many statistical applications such as prediction and personalized medicine. In some problems, there is an additional auxiliary variable Z in the training dataset used to construct estimators, but Z is not available for future prediction or selecting patient treatment in personalized medicine. For example, in the training dataset longitudinal outcomes are observed, but only the last outcome Y is concerned in the future prediction or analysis. The longitudinal outcomes other than the last point is then the variable Z that is observed and related with both Y and U. Previous work on how to make use of Z in the estimation of
mainly focused on using Z in the construction of a linear function of U to reduce covariate dimension for better estimation. Using
, we propose a two-step estimation of inner and outer expectations, respectively, with sufficient dimension reduction for kernel estimation in both steps. The information from Z is utilized not only in dimension reduction, but also directly in the estimation. Because of the existence of different ways for dimension reduction, we construct two estimators that may improve the estimator without using Z. The improvements are shown in the convergence rate of estimators as the sample size increases to infinity as well as in the finite sample simulation performance. A real data analysis about the selection of mammography intervention is presented for illustration.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.2020.1713793</identifier><language>eng</language><publisher>Alexandria: Taylor & Francis</publisher><subject>Auxiliary information ; Convergence ; Convergence rate ; Customization ; Data analysis ; Datasets ; Estimators ; Kernel estimation ; Linear functions ; Mammography ; Nonparametric statistics ; Precision medicine ; Reduction ; Regression analysis ; Simulation ; Statistical methods ; Statistics ; Sufficient dimension reduction ; Training ; Two-step regression</subject><ispartof>Journal of the American Statistical Association, 2021-07, Vol.116 (535), p.1346-1357</ispartof><rights>2020 American Statistical Association 2020</rights><rights>2020 American Statistical Association</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c366t-3f68bccd828f9dc20478f0cc8518cfe5e5e6d53db079680174b99aaac2a12cba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/01621459.2020.1713793$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/01621459.2020.1713793$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,60436</link.rule.ids></links><search><creatorcontrib>Xie, Bingying</creatorcontrib><creatorcontrib>Shao, Jun</creatorcontrib><title>Nonparametric Estimation of Conditional Expectation with Auxiliary Information and Dimension Reduction</title><title>Journal of the American Statistical Association</title><description>Nonparametric estimation of the conditional expectation
of an outcome Y given a covariate vector U is of primary importance in many statistical applications such as prediction and personalized medicine. In some problems, there is an additional auxiliary variable Z in the training dataset used to construct estimators, but Z is not available for future prediction or selecting patient treatment in personalized medicine. For example, in the training dataset longitudinal outcomes are observed, but only the last outcome Y is concerned in the future prediction or analysis. The longitudinal outcomes other than the last point is then the variable Z that is observed and related with both Y and U. Previous work on how to make use of Z in the estimation of
mainly focused on using Z in the construction of a linear function of U to reduce covariate dimension for better estimation. Using
, we propose a two-step estimation of inner and outer expectations, respectively, with sufficient dimension reduction for kernel estimation in both steps. The information from Z is utilized not only in dimension reduction, but also directly in the estimation. Because of the existence of different ways for dimension reduction, we construct two estimators that may improve the estimator without using Z. The improvements are shown in the convergence rate of estimators as the sample size increases to infinity as well as in the finite sample simulation performance. A real data analysis about the selection of mammography intervention is presented for illustration.</description><subject>Auxiliary information</subject><subject>Convergence</subject><subject>Convergence rate</subject><subject>Customization</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Estimators</subject><subject>Kernel estimation</subject><subject>Linear functions</subject><subject>Mammography</subject><subject>Nonparametric statistics</subject><subject>Precision medicine</subject><subject>Reduction</subject><subject>Regression analysis</subject><subject>Simulation</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Sufficient dimension reduction</subject><subject>Training</subject><subject>Two-step regression</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UE1Lw0AQXUTBWv0JQsBz6n4k2c3NUqsWioIoeFs2-4Fb0mzc3dDm35uQenXmMMzMe4-ZB8AtggsEGbyHqMAoy8sFhngYUURoSc7ADOWEpphmX-dgNmLSEXQJrkLYwSEoYzNgXl3TCi_2Onork3WIdi-idU3iTLJyjbJjI-pkfWy1jNPqYON3suyOtrbC98mmMc6fWKJRyaPd6yaM3btWnRzn1-DCiDrom1Odg8-n9cfqJd2-PW9Wy20qSVHElJiCVVIqhpkplcQwo8xAKVmOmDQ6H7JQOVEVpGXBIKJZVZZCCIkFwrISZA7uJt3Wu59Oh8h3rvPD_YFjSiFDlGE0oPIJJb0LwWvDWz-87XuOIB8t5X-W8tFSfrJ04D1MPDt9fHC-VjyKvnbeeNFIGzj5X-IXYhV_vA</recordid><startdate>20210703</startdate><enddate>20210703</enddate><creator>Xie, Bingying</creator><creator>Shao, Jun</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope></search><sort><creationdate>20210703</creationdate><title>Nonparametric Estimation of Conditional Expectation with Auxiliary Information and Dimension Reduction</title><author>Xie, Bingying ; Shao, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-3f68bccd828f9dc20478f0cc8518cfe5e5e6d53db079680174b99aaac2a12cba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Auxiliary information</topic><topic>Convergence</topic><topic>Convergence rate</topic><topic>Customization</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Estimators</topic><topic>Kernel estimation</topic><topic>Linear functions</topic><topic>Mammography</topic><topic>Nonparametric statistics</topic><topic>Precision medicine</topic><topic>Reduction</topic><topic>Regression analysis</topic><topic>Simulation</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Sufficient dimension reduction</topic><topic>Training</topic><topic>Two-step regression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Bingying</creatorcontrib><creatorcontrib>Shao, Jun</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Bingying</au><au>Shao, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonparametric Estimation of Conditional Expectation with Auxiliary Information and Dimension Reduction</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>2021-07-03</date><risdate>2021</risdate><volume>116</volume><issue>535</issue><spage>1346</spage><epage>1357</epage><pages>1346-1357</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><abstract>Nonparametric estimation of the conditional expectation
of an outcome Y given a covariate vector U is of primary importance in many statistical applications such as prediction and personalized medicine. In some problems, there is an additional auxiliary variable Z in the training dataset used to construct estimators, but Z is not available for future prediction or selecting patient treatment in personalized medicine. For example, in the training dataset longitudinal outcomes are observed, but only the last outcome Y is concerned in the future prediction or analysis. The longitudinal outcomes other than the last point is then the variable Z that is observed and related with both Y and U. Previous work on how to make use of Z in the estimation of
mainly focused on using Z in the construction of a linear function of U to reduce covariate dimension for better estimation. Using
, we propose a two-step estimation of inner and outer expectations, respectively, with sufficient dimension reduction for kernel estimation in both steps. The information from Z is utilized not only in dimension reduction, but also directly in the estimation. Because of the existence of different ways for dimension reduction, we construct two estimators that may improve the estimator without using Z. The improvements are shown in the convergence rate of estimators as the sample size increases to infinity as well as in the finite sample simulation performance. A real data analysis about the selection of mammography intervention is presented for illustration.</abstract><cop>Alexandria</cop><pub>Taylor & Francis</pub><doi>10.1080/01621459.2020.1713793</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-1459 |
ispartof | Journal of the American Statistical Association, 2021-07, Vol.116 (535), p.1346-1357 |
issn | 0162-1459 1537-274X |
language | eng |
recordid | cdi_crossref_primary_10_1080_01621459_2020_1713793 |
source | Taylor & Francis Journals Complete |
subjects | Auxiliary information Convergence Convergence rate Customization Data analysis Datasets Estimators Kernel estimation Linear functions Mammography Nonparametric statistics Precision medicine Reduction Regression analysis Simulation Statistical methods Statistics Sufficient dimension reduction Training Two-step regression |
title | Nonparametric Estimation of Conditional Expectation with Auxiliary Information and Dimension Reduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A01%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonparametric%20Estimation%20of%20Conditional%20Expectation%20with%20Auxiliary%20Information%20and%20Dimension%20Reduction&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Xie,%20Bingying&rft.date=2021-07-03&rft.volume=116&rft.issue=535&rft.spage=1346&rft.epage=1357&rft.pages=1346-1357&rft.issn=0162-1459&rft.eissn=1537-274X&rft_id=info:doi/10.1080/01621459.2020.1713793&rft_dat=%3Cproquest_cross%3E2770817821%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2770817821&rft_id=info:pmid/&rfr_iscdi=true |