Covariate-Adjusted Regression for Distorted Longitudinal Data With Informative Observation Times

In many longitudinal studies, repeated response and predictors are not directly observed, but can be treated as distorted by unknown functions of a common confounding covariate. Moreover, longitudinal data involve an observation process which may be informative with a longitudinal response process i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 2019-07, Vol.114 (527), p.1241-1250
Hauptverfasser: Deng, Shirong, Zhao, Xingqiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1250
container_issue 527
container_start_page 1241
container_title Journal of the American Statistical Association
container_volume 114
creator Deng, Shirong
Zhao, Xingqiu
description In many longitudinal studies, repeated response and predictors are not directly observed, but can be treated as distorted by unknown functions of a common confounding covariate. Moreover, longitudinal data involve an observation process which may be informative with a longitudinal response process in practice. To deal with such complex data, we propose a class of flexible semiparametric covariate-adjusted joint models. The new models not only allow for the longitudinal response to be correlated with observation times through latent variables and completely unspecified link functions, but they also characterize distorted longitudinal response and predictors by unknown multiplicative factors depending on time and a confounding covariate. For estimation of regression parameters in the proposed models, we develop a novel covariate-adjusted estimating equation approach which does not rely on forms of link functions and distributions of frailties. The asymptotic properties of resulting parameter estimators are established and examined by simulation studies. A longitudinal data example containing calcium absorption and intake measurements is provided for illustration. Supplementary materials for this article are available online.
doi_str_mv 10.1080/01621459.2018.1482757
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_01621459_2018_1482757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45218593</jstor_id><sourcerecordid>45218593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-a3e2cfd540599ae103435455dad1e56127909cf1b486489950a5f09127dd0bc3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKc_QSiIl535bJM7x_waDAYy0LuYNenM2JqZpJP9e1M6wStzc0LO854THgCuERwhyOEdRAVGlIkRhoiPEOW4ZOUJGCBGyhyX9P0UDDom76BzcBHCGqZTcj4AHxO3V96qaPKxXrchGp29mpU3IVjXZLXz2YMN0fmuMXPNysZW20ZtsgcVVfZm42c2bRK2VdHuTTZfBuP36Z7CC7s14RKc1WoTzNWxDsHi6XExecln8-fpZDzLK0p5zBUxuKo1o5AJoQyChBJGGdNKI8MKhEsBRVWjJeUF5UIwqFgNRXrXGi4rMgQ3_didd1-tCVGuXevTP4PEWBRCEIpZolhPVd6F4E0td95ulT9IBGXnUv66lJ1LeXSZcrd9bt2p-BvCBJaSMow4EyRx9z1neyXfzm-0jOqwcb72qqlskOT_VT_l5Ybr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2296993425</pqid></control><display><type>article</type><title>Covariate-Adjusted Regression for Distorted Longitudinal Data With Informative Observation Times</title><source>Taylor &amp; Francis</source><creator>Deng, Shirong ; Zhao, Xingqiu</creator><creatorcontrib>Deng, Shirong ; Zhao, Xingqiu</creatorcontrib><description>In many longitudinal studies, repeated response and predictors are not directly observed, but can be treated as distorted by unknown functions of a common confounding covariate. Moreover, longitudinal data involve an observation process which may be informative with a longitudinal response process in practice. To deal with such complex data, we propose a class of flexible semiparametric covariate-adjusted joint models. The new models not only allow for the longitudinal response to be correlated with observation times through latent variables and completely unspecified link functions, but they also characterize distorted longitudinal response and predictors by unknown multiplicative factors depending on time and a confounding covariate. For estimation of regression parameters in the proposed models, we develop a novel covariate-adjusted estimating equation approach which does not rely on forms of link functions and distributions of frailties. The asymptotic properties of resulting parameter estimators are established and examined by simulation studies. A longitudinal data example containing calcium absorption and intake measurements is provided for illustration. Supplementary materials for this article are available online.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.2018.1482757</identifier><language>eng</language><publisher>Alexandria: Taylor &amp; Francis</publisher><subject>Absorption ; Asymptotic normality ; Asymptotic properties ; Calcium ; Computer simulation ; Correlation analysis ; Covariate-adjusted regression ; Distorted longitudinal data ; Distortion ; Informative observation times ; Latent variable ; Longitudinal studies ; Mathematical models ; Parameter estimation ; Regression analysis ; Simulation ; Statistical methods ; Statistics ; Theory and Methods</subject><ispartof>Journal of the American Statistical Association, 2019-07, Vol.114 (527), p.1241-1250</ispartof><rights>2018 American Statistical Association 2018</rights><rights>Copyright © 2019 American Statistical Association</rights><rights>2018 American Statistical Association</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-a3e2cfd540599ae103435455dad1e56127909cf1b486489950a5f09127dd0bc3</citedby><cites>FETCH-LOGICAL-c448t-a3e2cfd540599ae103435455dad1e56127909cf1b486489950a5f09127dd0bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/01621459.2018.1482757$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/01621459.2018.1482757$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids></links><search><creatorcontrib>Deng, Shirong</creatorcontrib><creatorcontrib>Zhao, Xingqiu</creatorcontrib><title>Covariate-Adjusted Regression for Distorted Longitudinal Data With Informative Observation Times</title><title>Journal of the American Statistical Association</title><description>In many longitudinal studies, repeated response and predictors are not directly observed, but can be treated as distorted by unknown functions of a common confounding covariate. Moreover, longitudinal data involve an observation process which may be informative with a longitudinal response process in practice. To deal with such complex data, we propose a class of flexible semiparametric covariate-adjusted joint models. The new models not only allow for the longitudinal response to be correlated with observation times through latent variables and completely unspecified link functions, but they also characterize distorted longitudinal response and predictors by unknown multiplicative factors depending on time and a confounding covariate. For estimation of regression parameters in the proposed models, we develop a novel covariate-adjusted estimating equation approach which does not rely on forms of link functions and distributions of frailties. The asymptotic properties of resulting parameter estimators are established and examined by simulation studies. A longitudinal data example containing calcium absorption and intake measurements is provided for illustration. Supplementary materials for this article are available online.</description><subject>Absorption</subject><subject>Asymptotic normality</subject><subject>Asymptotic properties</subject><subject>Calcium</subject><subject>Computer simulation</subject><subject>Correlation analysis</subject><subject>Covariate-adjusted regression</subject><subject>Distorted longitudinal data</subject><subject>Distortion</subject><subject>Informative observation times</subject><subject>Latent variable</subject><subject>Longitudinal studies</subject><subject>Mathematical models</subject><subject>Parameter estimation</subject><subject>Regression analysis</subject><subject>Simulation</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Theory and Methods</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOKc_QSiIl535bJM7x_waDAYy0LuYNenM2JqZpJP9e1M6wStzc0LO854THgCuERwhyOEdRAVGlIkRhoiPEOW4ZOUJGCBGyhyX9P0UDDom76BzcBHCGqZTcj4AHxO3V96qaPKxXrchGp29mpU3IVjXZLXz2YMN0fmuMXPNysZW20ZtsgcVVfZm42c2bRK2VdHuTTZfBuP36Z7CC7s14RKc1WoTzNWxDsHi6XExecln8-fpZDzLK0p5zBUxuKo1o5AJoQyChBJGGdNKI8MKhEsBRVWjJeUF5UIwqFgNRXrXGi4rMgQ3_didd1-tCVGuXevTP4PEWBRCEIpZolhPVd6F4E0td95ulT9IBGXnUv66lJ1LeXSZcrd9bt2p-BvCBJaSMow4EyRx9z1neyXfzm-0jOqwcb72qqlskOT_VT_l5Ybr</recordid><startdate>20190703</startdate><enddate>20190703</enddate><creator>Deng, Shirong</creator><creator>Zhao, Xingqiu</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Group, LLC</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope></search><sort><creationdate>20190703</creationdate><title>Covariate-Adjusted Regression for Distorted Longitudinal Data With Informative Observation Times</title><author>Deng, Shirong ; Zhao, Xingqiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-a3e2cfd540599ae103435455dad1e56127909cf1b486489950a5f09127dd0bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorption</topic><topic>Asymptotic normality</topic><topic>Asymptotic properties</topic><topic>Calcium</topic><topic>Computer simulation</topic><topic>Correlation analysis</topic><topic>Covariate-adjusted regression</topic><topic>Distorted longitudinal data</topic><topic>Distortion</topic><topic>Informative observation times</topic><topic>Latent variable</topic><topic>Longitudinal studies</topic><topic>Mathematical models</topic><topic>Parameter estimation</topic><topic>Regression analysis</topic><topic>Simulation</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Theory and Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Shirong</creatorcontrib><creatorcontrib>Zhao, Xingqiu</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Shirong</au><au>Zhao, Xingqiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Covariate-Adjusted Regression for Distorted Longitudinal Data With Informative Observation Times</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>2019-07-03</date><risdate>2019</risdate><volume>114</volume><issue>527</issue><spage>1241</spage><epage>1250</epage><pages>1241-1250</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><abstract>In many longitudinal studies, repeated response and predictors are not directly observed, but can be treated as distorted by unknown functions of a common confounding covariate. Moreover, longitudinal data involve an observation process which may be informative with a longitudinal response process in practice. To deal with such complex data, we propose a class of flexible semiparametric covariate-adjusted joint models. The new models not only allow for the longitudinal response to be correlated with observation times through latent variables and completely unspecified link functions, but they also characterize distorted longitudinal response and predictors by unknown multiplicative factors depending on time and a confounding covariate. For estimation of regression parameters in the proposed models, we develop a novel covariate-adjusted estimating equation approach which does not rely on forms of link functions and distributions of frailties. The asymptotic properties of resulting parameter estimators are established and examined by simulation studies. A longitudinal data example containing calcium absorption and intake measurements is provided for illustration. Supplementary materials for this article are available online.</abstract><cop>Alexandria</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/01621459.2018.1482757</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0162-1459
ispartof Journal of the American Statistical Association, 2019-07, Vol.114 (527), p.1241-1250
issn 0162-1459
1537-274X
language eng
recordid cdi_crossref_primary_10_1080_01621459_2018_1482757
source Taylor & Francis
subjects Absorption
Asymptotic normality
Asymptotic properties
Calcium
Computer simulation
Correlation analysis
Covariate-adjusted regression
Distorted longitudinal data
Distortion
Informative observation times
Latent variable
Longitudinal studies
Mathematical models
Parameter estimation
Regression analysis
Simulation
Statistical methods
Statistics
Theory and Methods
title Covariate-Adjusted Regression for Distorted Longitudinal Data With Informative Observation Times
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A38%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Covariate-Adjusted%20Regression%20for%20Distorted%20Longitudinal%20Data%20With%20Informative%20Observation%20Times&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Deng,%20Shirong&rft.date=2019-07-03&rft.volume=114&rft.issue=527&rft.spage=1241&rft.epage=1250&rft.pages=1241-1250&rft.issn=0162-1459&rft.eissn=1537-274X&rft_id=info:doi/10.1080/01621459.2018.1482757&rft_dat=%3Cjstor_cross%3E45218593%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2296993425&rft_id=info:pmid/&rft_jstor_id=45218593&rfr_iscdi=true