Covariate-Adjusted Regression for Distorted Longitudinal Data With Informative Observation Times
In many longitudinal studies, repeated response and predictors are not directly observed, but can be treated as distorted by unknown functions of a common confounding covariate. Moreover, longitudinal data involve an observation process which may be informative with a longitudinal response process i...
Gespeichert in:
Veröffentlicht in: | Journal of the American Statistical Association 2019-07, Vol.114 (527), p.1241-1250 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1250 |
---|---|
container_issue | 527 |
container_start_page | 1241 |
container_title | Journal of the American Statistical Association |
container_volume | 114 |
creator | Deng, Shirong Zhao, Xingqiu |
description | In many longitudinal studies, repeated response and predictors are not directly observed, but can be treated as distorted by unknown functions of a common confounding covariate. Moreover, longitudinal data involve an observation process which may be informative with a longitudinal response process in practice. To deal with such complex data, we propose a class of flexible semiparametric covariate-adjusted joint models. The new models not only allow for the longitudinal response to be correlated with observation times through latent variables and completely unspecified link functions, but they also characterize distorted longitudinal response and predictors by unknown multiplicative factors depending on time and a confounding covariate. For estimation of regression parameters in the proposed models, we develop a novel covariate-adjusted estimating equation approach which does not rely on forms of link functions and distributions of frailties. The asymptotic properties of resulting parameter estimators are established and examined by simulation studies. A longitudinal data example containing calcium absorption and intake measurements is provided for illustration. Supplementary materials for this article are available online. |
doi_str_mv | 10.1080/01621459.2018.1482757 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_01621459_2018_1482757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45218593</jstor_id><sourcerecordid>45218593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-a3e2cfd540599ae103435455dad1e56127909cf1b486489950a5f09127dd0bc3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKc_QSiIl535bJM7x_waDAYy0LuYNenM2JqZpJP9e1M6wStzc0LO854THgCuERwhyOEdRAVGlIkRhoiPEOW4ZOUJGCBGyhyX9P0UDDom76BzcBHCGqZTcj4AHxO3V96qaPKxXrchGp29mpU3IVjXZLXz2YMN0fmuMXPNysZW20ZtsgcVVfZm42c2bRK2VdHuTTZfBuP36Z7CC7s14RKc1WoTzNWxDsHi6XExecln8-fpZDzLK0p5zBUxuKo1o5AJoQyChBJGGdNKI8MKhEsBRVWjJeUF5UIwqFgNRXrXGi4rMgQ3_didd1-tCVGuXevTP4PEWBRCEIpZolhPVd6F4E0td95ulT9IBGXnUv66lJ1LeXSZcrd9bt2p-BvCBJaSMow4EyRx9z1neyXfzm-0jOqwcb72qqlskOT_VT_l5Ybr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2296993425</pqid></control><display><type>article</type><title>Covariate-Adjusted Regression for Distorted Longitudinal Data With Informative Observation Times</title><source>Taylor & Francis</source><creator>Deng, Shirong ; Zhao, Xingqiu</creator><creatorcontrib>Deng, Shirong ; Zhao, Xingqiu</creatorcontrib><description>In many longitudinal studies, repeated response and predictors are not directly observed, but can be treated as distorted by unknown functions of a common confounding covariate. Moreover, longitudinal data involve an observation process which may be informative with a longitudinal response process in practice. To deal with such complex data, we propose a class of flexible semiparametric covariate-adjusted joint models. The new models not only allow for the longitudinal response to be correlated with observation times through latent variables and completely unspecified link functions, but they also characterize distorted longitudinal response and predictors by unknown multiplicative factors depending on time and a confounding covariate. For estimation of regression parameters in the proposed models, we develop a novel covariate-adjusted estimating equation approach which does not rely on forms of link functions and distributions of frailties. The asymptotic properties of resulting parameter estimators are established and examined by simulation studies. A longitudinal data example containing calcium absorption and intake measurements is provided for illustration. Supplementary materials for this article are available online.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.2018.1482757</identifier><language>eng</language><publisher>Alexandria: Taylor & Francis</publisher><subject>Absorption ; Asymptotic normality ; Asymptotic properties ; Calcium ; Computer simulation ; Correlation analysis ; Covariate-adjusted regression ; Distorted longitudinal data ; Distortion ; Informative observation times ; Latent variable ; Longitudinal studies ; Mathematical models ; Parameter estimation ; Regression analysis ; Simulation ; Statistical methods ; Statistics ; Theory and Methods</subject><ispartof>Journal of the American Statistical Association, 2019-07, Vol.114 (527), p.1241-1250</ispartof><rights>2018 American Statistical Association 2018</rights><rights>Copyright © 2019 American Statistical Association</rights><rights>2018 American Statistical Association</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-a3e2cfd540599ae103435455dad1e56127909cf1b486489950a5f09127dd0bc3</citedby><cites>FETCH-LOGICAL-c448t-a3e2cfd540599ae103435455dad1e56127909cf1b486489950a5f09127dd0bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/01621459.2018.1482757$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/01621459.2018.1482757$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids></links><search><creatorcontrib>Deng, Shirong</creatorcontrib><creatorcontrib>Zhao, Xingqiu</creatorcontrib><title>Covariate-Adjusted Regression for Distorted Longitudinal Data With Informative Observation Times</title><title>Journal of the American Statistical Association</title><description>In many longitudinal studies, repeated response and predictors are not directly observed, but can be treated as distorted by unknown functions of a common confounding covariate. Moreover, longitudinal data involve an observation process which may be informative with a longitudinal response process in practice. To deal with such complex data, we propose a class of flexible semiparametric covariate-adjusted joint models. The new models not only allow for the longitudinal response to be correlated with observation times through latent variables and completely unspecified link functions, but they also characterize distorted longitudinal response and predictors by unknown multiplicative factors depending on time and a confounding covariate. For estimation of regression parameters in the proposed models, we develop a novel covariate-adjusted estimating equation approach which does not rely on forms of link functions and distributions of frailties. The asymptotic properties of resulting parameter estimators are established and examined by simulation studies. A longitudinal data example containing calcium absorption and intake measurements is provided for illustration. Supplementary materials for this article are available online.</description><subject>Absorption</subject><subject>Asymptotic normality</subject><subject>Asymptotic properties</subject><subject>Calcium</subject><subject>Computer simulation</subject><subject>Correlation analysis</subject><subject>Covariate-adjusted regression</subject><subject>Distorted longitudinal data</subject><subject>Distortion</subject><subject>Informative observation times</subject><subject>Latent variable</subject><subject>Longitudinal studies</subject><subject>Mathematical models</subject><subject>Parameter estimation</subject><subject>Regression analysis</subject><subject>Simulation</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Theory and Methods</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOKc_QSiIl535bJM7x_waDAYy0LuYNenM2JqZpJP9e1M6wStzc0LO854THgCuERwhyOEdRAVGlIkRhoiPEOW4ZOUJGCBGyhyX9P0UDDom76BzcBHCGqZTcj4AHxO3V96qaPKxXrchGp29mpU3IVjXZLXz2YMN0fmuMXPNysZW20ZtsgcVVfZm42c2bRK2VdHuTTZfBuP36Z7CC7s14RKc1WoTzNWxDsHi6XExecln8-fpZDzLK0p5zBUxuKo1o5AJoQyChBJGGdNKI8MKhEsBRVWjJeUF5UIwqFgNRXrXGi4rMgQ3_didd1-tCVGuXevTP4PEWBRCEIpZolhPVd6F4E0td95ulT9IBGXnUv66lJ1LeXSZcrd9bt2p-BvCBJaSMow4EyRx9z1neyXfzm-0jOqwcb72qqlskOT_VT_l5Ybr</recordid><startdate>20190703</startdate><enddate>20190703</enddate><creator>Deng, Shirong</creator><creator>Zhao, Xingqiu</creator><general>Taylor & Francis</general><general>Taylor & Francis Group, LLC</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope></search><sort><creationdate>20190703</creationdate><title>Covariate-Adjusted Regression for Distorted Longitudinal Data With Informative Observation Times</title><author>Deng, Shirong ; Zhao, Xingqiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-a3e2cfd540599ae103435455dad1e56127909cf1b486489950a5f09127dd0bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorption</topic><topic>Asymptotic normality</topic><topic>Asymptotic properties</topic><topic>Calcium</topic><topic>Computer simulation</topic><topic>Correlation analysis</topic><topic>Covariate-adjusted regression</topic><topic>Distorted longitudinal data</topic><topic>Distortion</topic><topic>Informative observation times</topic><topic>Latent variable</topic><topic>Longitudinal studies</topic><topic>Mathematical models</topic><topic>Parameter estimation</topic><topic>Regression analysis</topic><topic>Simulation</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Theory and Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Shirong</creatorcontrib><creatorcontrib>Zhao, Xingqiu</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Shirong</au><au>Zhao, Xingqiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Covariate-Adjusted Regression for Distorted Longitudinal Data With Informative Observation Times</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>2019-07-03</date><risdate>2019</risdate><volume>114</volume><issue>527</issue><spage>1241</spage><epage>1250</epage><pages>1241-1250</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><abstract>In many longitudinal studies, repeated response and predictors are not directly observed, but can be treated as distorted by unknown functions of a common confounding covariate. Moreover, longitudinal data involve an observation process which may be informative with a longitudinal response process in practice. To deal with such complex data, we propose a class of flexible semiparametric covariate-adjusted joint models. The new models not only allow for the longitudinal response to be correlated with observation times through latent variables and completely unspecified link functions, but they also characterize distorted longitudinal response and predictors by unknown multiplicative factors depending on time and a confounding covariate. For estimation of regression parameters in the proposed models, we develop a novel covariate-adjusted estimating equation approach which does not rely on forms of link functions and distributions of frailties. The asymptotic properties of resulting parameter estimators are established and examined by simulation studies. A longitudinal data example containing calcium absorption and intake measurements is provided for illustration. Supplementary materials for this article are available online.</abstract><cop>Alexandria</cop><pub>Taylor & Francis</pub><doi>10.1080/01621459.2018.1482757</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-1459 |
ispartof | Journal of the American Statistical Association, 2019-07, Vol.114 (527), p.1241-1250 |
issn | 0162-1459 1537-274X |
language | eng |
recordid | cdi_crossref_primary_10_1080_01621459_2018_1482757 |
source | Taylor & Francis |
subjects | Absorption Asymptotic normality Asymptotic properties Calcium Computer simulation Correlation analysis Covariate-adjusted regression Distorted longitudinal data Distortion Informative observation times Latent variable Longitudinal studies Mathematical models Parameter estimation Regression analysis Simulation Statistical methods Statistics Theory and Methods |
title | Covariate-Adjusted Regression for Distorted Longitudinal Data With Informative Observation Times |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A38%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Covariate-Adjusted%20Regression%20for%20Distorted%20Longitudinal%20Data%20With%20Informative%20Observation%20Times&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Deng,%20Shirong&rft.date=2019-07-03&rft.volume=114&rft.issue=527&rft.spage=1241&rft.epage=1250&rft.pages=1241-1250&rft.issn=0162-1459&rft.eissn=1537-274X&rft_id=info:doi/10.1080/01621459.2018.1482757&rft_dat=%3Cjstor_cross%3E45218593%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2296993425&rft_id=info:pmid/&rft_jstor_id=45218593&rfr_iscdi=true |