A Class of Discrete Transformation Survival Models With Application to Default Probability Prediction
Corporate bankruptcy prediction plays a central role in academic finance research, business practice, and government regulation. Consequently, accurate default probability prediction is extremely important. We propose to apply a discrete transformation family of survival models to corporate default...
Gespeichert in:
Veröffentlicht in: | Journal of the American Statistical Association 2012-09, Vol.107 (499), p.990-1003 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1003 |
---|---|
container_issue | 499 |
container_start_page | 990 |
container_title | Journal of the American Statistical Association |
container_volume | 107 |
creator | Ding, A. Adam Tian, Shaonan Yu, Yan Guo, Hui |
description | Corporate bankruptcy prediction plays a central role in academic finance research, business practice, and government regulation. Consequently, accurate default probability prediction is extremely important. We propose to apply a discrete transformation family of survival models to corporate default risk predictions. A class of Box-Cox transformations and logarithmic transformations is naturally adopted. The proposed transformation model family is shown to include the popular Shumway model and the grouped relative risk model. We show that a transformation parameter different from those two models is needed for default prediction using a bankruptcy dataset. In addition, we show using out-of-sample validation statistics that our model improves performance. We use the estimated default probability to examine a popular asset pricing question and determine whether default risk has carried a premium. Due to some distinct features of the bankruptcy application, the proposed class of discrete transformation survival models with time-varying covariates is different from the continuous survival models in the survival analysis literature. Their similarities and differences are discussed. |
doi_str_mv | 10.1080/01621459.2012.682806 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_01621459_2012_682806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23427404</jstor_id><sourcerecordid>23427404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-ac23eb1cff9bb652382e8f4b560f5185e9e9d201f599e5f65e2a376f41f3da333</originalsourceid><addsrcrecordid>eNp9kN1KAzEQhYMoWKtvoJAX2JqfTTZ7JaX1DyoKVvQuZLMJpqRNSWKlb--uq146NzNwzplhPgDOMZpgJNAlwpzgktUTgjCZcEEE4gdghBmtClKVb4dg1FuK3nMMTlJaoa4qIUbATOHMq5RgsHDuko4mG7iMapNsiGuVXdjA54-4czvl4UNojU_w1eV3ON1uvdODIQc4N1Z9-AyfYmhU47zL-242rdO94xQcWeWTOfvpY_Byc72c3RWLx9v72XRRaMpJLpQm1DRYW1s3DWeECmKELRvGkWVYMFObuu1-tKyuDbOcGaJoxW2JLW0VpXQMymGvjiGlaKzcRrdWcS8xkj0q-YtK9qjkgKqLXQyxVcoh_mUILTt6qOz0q0F3m28qnyH6Vma19yHajpV2SdJ_L3wBgxt7Dw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Class of Discrete Transformation Survival Models With Application to Default Probability Prediction</title><source>Jstor Complete Legacy</source><source>Taylor & Francis</source><source>JSTOR Mathematics & Statistics</source><creator>Ding, A. Adam ; Tian, Shaonan ; Yu, Yan ; Guo, Hui</creator><creatorcontrib>Ding, A. Adam ; Tian, Shaonan ; Yu, Yan ; Guo, Hui</creatorcontrib><description>Corporate bankruptcy prediction plays a central role in academic finance research, business practice, and government regulation. Consequently, accurate default probability prediction is extremely important. We propose to apply a discrete transformation family of survival models to corporate default risk predictions. A class of Box-Cox transformations and logarithmic transformations is naturally adopted. The proposed transformation model family is shown to include the popular Shumway model and the grouped relative risk model. We show that a transformation parameter different from those two models is needed for default prediction using a bankruptcy dataset. In addition, we show using out-of-sample validation statistics that our model improves performance. We use the estimated default probability to examine a popular asset pricing question and determine whether default risk has carried a premium. Due to some distinct features of the bankruptcy application, the proposed class of discrete transformation survival models with time-varying covariates is different from the continuous survival models in the survival analysis literature. Their similarities and differences are discussed.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.2012.682806</identifier><language>eng</language><publisher>Taylor & Francis Group</publisher><subject>Applications and Case Studies ; Bankruptcy ; Business structures ; Corporate bankruptcy prediction ; Credit risk ; Loan defaults ; Logistic regression ; Mathematical transformations ; Modeling ; Parametric models ; Probabilities ; Proportional hazards ; Survival analysis</subject><ispartof>Journal of the American Statistical Association, 2012-09, Vol.107 (499), p.990-1003</ispartof><rights>Copyright Taylor & Francis Group, LLC 2012</rights><rights>2012 American Statistical Association</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-ac23eb1cff9bb652382e8f4b560f5185e9e9d201f599e5f65e2a376f41f3da333</citedby><cites>FETCH-LOGICAL-c362t-ac23eb1cff9bb652382e8f4b560f5185e9e9d201f599e5f65e2a376f41f3da333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23427404$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23427404$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27901,27902,57992,57996,58225,58229,59620,60409</link.rule.ids></links><search><creatorcontrib>Ding, A. Adam</creatorcontrib><creatorcontrib>Tian, Shaonan</creatorcontrib><creatorcontrib>Yu, Yan</creatorcontrib><creatorcontrib>Guo, Hui</creatorcontrib><title>A Class of Discrete Transformation Survival Models With Application to Default Probability Prediction</title><title>Journal of the American Statistical Association</title><description>Corporate bankruptcy prediction plays a central role in academic finance research, business practice, and government regulation. Consequently, accurate default probability prediction is extremely important. We propose to apply a discrete transformation family of survival models to corporate default risk predictions. A class of Box-Cox transformations and logarithmic transformations is naturally adopted. The proposed transformation model family is shown to include the popular Shumway model and the grouped relative risk model. We show that a transformation parameter different from those two models is needed for default prediction using a bankruptcy dataset. In addition, we show using out-of-sample validation statistics that our model improves performance. We use the estimated default probability to examine a popular asset pricing question and determine whether default risk has carried a premium. Due to some distinct features of the bankruptcy application, the proposed class of discrete transformation survival models with time-varying covariates is different from the continuous survival models in the survival analysis literature. Their similarities and differences are discussed.</description><subject>Applications and Case Studies</subject><subject>Bankruptcy</subject><subject>Business structures</subject><subject>Corporate bankruptcy prediction</subject><subject>Credit risk</subject><subject>Loan defaults</subject><subject>Logistic regression</subject><subject>Mathematical transformations</subject><subject>Modeling</subject><subject>Parametric models</subject><subject>Probabilities</subject><subject>Proportional hazards</subject><subject>Survival analysis</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kN1KAzEQhYMoWKtvoJAX2JqfTTZ7JaX1DyoKVvQuZLMJpqRNSWKlb--uq146NzNwzplhPgDOMZpgJNAlwpzgktUTgjCZcEEE4gdghBmtClKVb4dg1FuK3nMMTlJaoa4qIUbATOHMq5RgsHDuko4mG7iMapNsiGuVXdjA54-4czvl4UNojU_w1eV3ON1uvdODIQc4N1Z9-AyfYmhU47zL-242rdO94xQcWeWTOfvpY_Byc72c3RWLx9v72XRRaMpJLpQm1DRYW1s3DWeECmKELRvGkWVYMFObuu1-tKyuDbOcGaJoxW2JLW0VpXQMymGvjiGlaKzcRrdWcS8xkj0q-YtK9qjkgKqLXQyxVcoh_mUILTt6qOz0q0F3m28qnyH6Vma19yHajpV2SdJ_L3wBgxt7Dw</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Ding, A. Adam</creator><creator>Tian, Shaonan</creator><creator>Yu, Yan</creator><creator>Guo, Hui</creator><general>Taylor & Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120901</creationdate><title>A Class of Discrete Transformation Survival Models With Application to Default Probability Prediction</title><author>Ding, A. Adam ; Tian, Shaonan ; Yu, Yan ; Guo, Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-ac23eb1cff9bb652382e8f4b560f5185e9e9d201f599e5f65e2a376f41f3da333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applications and Case Studies</topic><topic>Bankruptcy</topic><topic>Business structures</topic><topic>Corporate bankruptcy prediction</topic><topic>Credit risk</topic><topic>Loan defaults</topic><topic>Logistic regression</topic><topic>Mathematical transformations</topic><topic>Modeling</topic><topic>Parametric models</topic><topic>Probabilities</topic><topic>Proportional hazards</topic><topic>Survival analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, A. Adam</creatorcontrib><creatorcontrib>Tian, Shaonan</creatorcontrib><creatorcontrib>Yu, Yan</creatorcontrib><creatorcontrib>Guo, Hui</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, A. Adam</au><au>Tian, Shaonan</au><au>Yu, Yan</au><au>Guo, Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Class of Discrete Transformation Survival Models With Application to Default Probability Prediction</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>2012-09-01</date><risdate>2012</risdate><volume>107</volume><issue>499</issue><spage>990</spage><epage>1003</epage><pages>990-1003</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><abstract>Corporate bankruptcy prediction plays a central role in academic finance research, business practice, and government regulation. Consequently, accurate default probability prediction is extremely important. We propose to apply a discrete transformation family of survival models to corporate default risk predictions. A class of Box-Cox transformations and logarithmic transformations is naturally adopted. The proposed transformation model family is shown to include the popular Shumway model and the grouped relative risk model. We show that a transformation parameter different from those two models is needed for default prediction using a bankruptcy dataset. In addition, we show using out-of-sample validation statistics that our model improves performance. We use the estimated default probability to examine a popular asset pricing question and determine whether default risk has carried a premium. Due to some distinct features of the bankruptcy application, the proposed class of discrete transformation survival models with time-varying covariates is different from the continuous survival models in the survival analysis literature. Their similarities and differences are discussed.</abstract><pub>Taylor & Francis Group</pub><doi>10.1080/01621459.2012.682806</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-1459 |
ispartof | Journal of the American Statistical Association, 2012-09, Vol.107 (499), p.990-1003 |
issn | 0162-1459 1537-274X |
language | eng |
recordid | cdi_crossref_primary_10_1080_01621459_2012_682806 |
source | Jstor Complete Legacy; Taylor & Francis; JSTOR Mathematics & Statistics |
subjects | Applications and Case Studies Bankruptcy Business structures Corporate bankruptcy prediction Credit risk Loan defaults Logistic regression Mathematical transformations Modeling Parametric models Probabilities Proportional hazards Survival analysis |
title | A Class of Discrete Transformation Survival Models With Application to Default Probability Prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A01%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Class%20of%20Discrete%20Transformation%20Survival%20Models%20With%20Application%20to%20Default%20Probability%20Prediction&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Ding,%20A.%20Adam&rft.date=2012-09-01&rft.volume=107&rft.issue=499&rft.spage=990&rft.epage=1003&rft.pages=990-1003&rft.issn=0162-1459&rft.eissn=1537-274X&rft_id=info:doi/10.1080/01621459.2012.682806&rft_dat=%3Cjstor_cross%3E23427404%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=23427404&rfr_iscdi=true |