Bayesian Density Estimation and Inference Using Mixtures

We describe and illustrate Bayesian inference in models for density estimation using mixtures of Dirichlet processes. These models provide natural settings for density estimation and are exemplified by special cases where data are modeled as a sample from mixtures of normal distributions. Efficient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 1995-06, Vol.90 (430), p.577-588
Hauptverfasser: Escobar, Michael D., West, Mike
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe and illustrate Bayesian inference in models for density estimation using mixtures of Dirichlet processes. These models provide natural settings for density estimation and are exemplified by special cases where data are modeled as a sample from mixtures of normal distributions. Efficient simulation methods are used to approximate various prior, posterior, and predictive distributions. This allows for direct inference on a variety of practical issues, including problems of local versus global smoothing, uncertainty about density estimates, assessment of modality, and the inference on the numbers of components. Also, convergence results are established for a general class of normal mixture models.
ISSN:0162-1459
1537-274X
DOI:10.1080/01621459.1995.10476550