Distribution Theory of Runs: A Markov Chain Approach
The statistics of the number of success runs in a sequence of Bernoulli trials have been used in many statistical areas. For almost a century, even in the simplest case of independent and identically distributed Bernoulli trials, the exact distributions of many run statistics still remain unknown. D...
Gespeichert in:
Veröffentlicht in: | Journal of the American Statistical Association 1994-09, Vol.89 (427), p.1050-1058 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1058 |
---|---|
container_issue | 427 |
container_start_page | 1050 |
container_title | Journal of the American Statistical Association |
container_volume | 89 |
creator | Fu, J. C. Koutras, M. V. |
description | The statistics of the number of success runs in a sequence of Bernoulli trials have been used in many statistical areas. For almost a century, even in the simplest case of independent and identically distributed Bernoulli trials, the exact distributions of many run statistics still remain unknown. Departing from the traditional combinatorial approach, in this article we present a simple unified approach for the distribution theory of runs based on a finite Markov chain imbedding technique. Our results cover not only the identical Bernoulli trials, but also the nonidentical Bernoulli trials. As a byproduct, our results also yield the exact distribution of the waiting time for the mth occurrence of a specific run. |
doi_str_mv | 10.1080/01621459.1994.10476841 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_01621459_1994_10476841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2290933</jstor_id><sourcerecordid>2290933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-b7150cb09612d5266928c2c81291d9ca039b0f4216f104eba2a5e96c9ec632cc3</originalsourceid><addsrcrecordid>eNqFkF9LwzAUxYMoOKdfQYr42pmbtEnjW5l_YSLIBN9CmrUss2tm0ir99qZsk715Xy5cfvfccw9Cl4AngDN8g4ERSFIxASGSMEo4yxI4QiNIKY8JTz6O0WiA4oE6RWfer3AonmUjlNwZ3zpTdK2xTTRfltb1ka2it67xt1EevSj3ab-j6VKZJso3G2eVXp6jk0rVvrzY9TF6f7ifT5_i2evj8zSfxZpy0cYFhxTrAgsGZJESxgTJNNEZEAELoRWmosBVQoBVwXVZKKLSUjAtSs0o0ZqO0dVWN5z96krfypXtXBNOyvBWxnGaQoDYFtLOeu_KSm6cWSvXS8ByCEjuA5JDQHIfUFi83qkrr1VdOdVo4_-2KQVO-QG28q11h-KEYi4JEVhQGrB8i5mmsm6tfqyrF7JVfW3dXpr-4-gXKEOChQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>274870551</pqid></control><display><type>article</type><title>Distribution Theory of Runs: A Markov Chain Approach</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Fu, J. C. ; Koutras, M. V.</creator><creatorcontrib>Fu, J. C. ; Koutras, M. V.</creatorcontrib><description>The statistics of the number of success runs in a sequence of Bernoulli trials have been used in many statistical areas. For almost a century, even in the simplest case of independent and identically distributed Bernoulli trials, the exact distributions of many run statistics still remain unknown. Departing from the traditional combinatorial approach, in this article we present a simple unified approach for the distribution theory of runs based on a finite Markov chain imbedding technique. Our results cover not only the identical Bernoulli trials, but also the nonidentical Bernoulli trials. As a byproduct, our results also yield the exact distribution of the waiting time for the mth occurrence of a specific run.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.1994.10476841</identifier><identifier>CODEN: JSTNAL</identifier><language>eng</language><publisher>Alexandria, VA: Taylor & Francis Group</publisher><subject>Bernoulli Hypothesis ; Bernoulli random variables ; Binomial distributions ; Distribution theory ; Exact sciences and technology ; Markov analysis ; Markov chains ; Mathematical moments ; Mathematics ; Matrices ; Patterns ; Probabilities ; Probability and statistics ; Quality assurance ; Random variables ; Reliability ; Sciences and techniques of general use ; Statistical theories ; Statistics ; Theory and Methods ; Transition probabilities ; Transition probability matrix</subject><ispartof>Journal of the American Statistical Association, 1994-09, Vol.89 (427), p.1050-1058</ispartof><rights>Copyright Taylor & Francis Group, LLC 1994</rights><rights>Copyright 1994 American Statistical Association</rights><rights>1995 INIST-CNRS</rights><rights>Copyright American Statistical Association Sep 1994</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-b7150cb09612d5266928c2c81291d9ca039b0f4216f104eba2a5e96c9ec632cc3</citedby><cites>FETCH-LOGICAL-c379t-b7150cb09612d5266928c2c81291d9ca039b0f4216f104eba2a5e96c9ec632cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2290933$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2290933$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3317371$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, J. C.</creatorcontrib><creatorcontrib>Koutras, M. V.</creatorcontrib><title>Distribution Theory of Runs: A Markov Chain Approach</title><title>Journal of the American Statistical Association</title><description>The statistics of the number of success runs in a sequence of Bernoulli trials have been used in many statistical areas. For almost a century, even in the simplest case of independent and identically distributed Bernoulli trials, the exact distributions of many run statistics still remain unknown. Departing from the traditional combinatorial approach, in this article we present a simple unified approach for the distribution theory of runs based on a finite Markov chain imbedding technique. Our results cover not only the identical Bernoulli trials, but also the nonidentical Bernoulli trials. As a byproduct, our results also yield the exact distribution of the waiting time for the mth occurrence of a specific run.</description><subject>Bernoulli Hypothesis</subject><subject>Bernoulli random variables</subject><subject>Binomial distributions</subject><subject>Distribution theory</subject><subject>Exact sciences and technology</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Mathematical moments</subject><subject>Mathematics</subject><subject>Matrices</subject><subject>Patterns</subject><subject>Probabilities</subject><subject>Probability and statistics</subject><subject>Quality assurance</subject><subject>Random variables</subject><subject>Reliability</subject><subject>Sciences and techniques of general use</subject><subject>Statistical theories</subject><subject>Statistics</subject><subject>Theory and Methods</subject><subject>Transition probabilities</subject><subject>Transition probability matrix</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkF9LwzAUxYMoOKdfQYr42pmbtEnjW5l_YSLIBN9CmrUss2tm0ir99qZsk715Xy5cfvfccw9Cl4AngDN8g4ERSFIxASGSMEo4yxI4QiNIKY8JTz6O0WiA4oE6RWfer3AonmUjlNwZ3zpTdK2xTTRfltb1ka2it67xt1EevSj3ab-j6VKZJso3G2eVXp6jk0rVvrzY9TF6f7ifT5_i2evj8zSfxZpy0cYFhxTrAgsGZJESxgTJNNEZEAELoRWmosBVQoBVwXVZKKLSUjAtSs0o0ZqO0dVWN5z96krfypXtXBNOyvBWxnGaQoDYFtLOeu_KSm6cWSvXS8ByCEjuA5JDQHIfUFi83qkrr1VdOdVo4_-2KQVO-QG28q11h-KEYi4JEVhQGrB8i5mmsm6tfqyrF7JVfW3dXpr-4-gXKEOChQ</recordid><startdate>19940901</startdate><enddate>19940901</enddate><creator>Fu, J. C.</creator><creator>Koutras, M. V.</creator><general>Taylor & Francis Group</general><general>American Statistical Association</general><general>Taylor & Francis Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8BJ</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>K9-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0R</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>19940901</creationdate><title>Distribution Theory of Runs: A Markov Chain Approach</title><author>Fu, J. C. ; Koutras, M. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-b7150cb09612d5266928c2c81291d9ca039b0f4216f104eba2a5e96c9ec632cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Bernoulli Hypothesis</topic><topic>Bernoulli random variables</topic><topic>Binomial distributions</topic><topic>Distribution theory</topic><topic>Exact sciences and technology</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Mathematical moments</topic><topic>Mathematics</topic><topic>Matrices</topic><topic>Patterns</topic><topic>Probabilities</topic><topic>Probability and statistics</topic><topic>Quality assurance</topic><topic>Random variables</topic><topic>Reliability</topic><topic>Sciences and techniques of general use</topic><topic>Statistical theories</topic><topic>Statistics</topic><topic>Theory and Methods</topic><topic>Transition probabilities</topic><topic>Transition probability matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, J. C.</creatorcontrib><creatorcontrib>Koutras, M. V.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, J. C.</au><au>Koutras, M. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distribution Theory of Runs: A Markov Chain Approach</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>1994-09-01</date><risdate>1994</risdate><volume>89</volume><issue>427</issue><spage>1050</spage><epage>1058</epage><pages>1050-1058</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><coden>JSTNAL</coden><abstract>The statistics of the number of success runs in a sequence of Bernoulli trials have been used in many statistical areas. For almost a century, even in the simplest case of independent and identically distributed Bernoulli trials, the exact distributions of many run statistics still remain unknown. Departing from the traditional combinatorial approach, in this article we present a simple unified approach for the distribution theory of runs based on a finite Markov chain imbedding technique. Our results cover not only the identical Bernoulli trials, but also the nonidentical Bernoulli trials. As a byproduct, our results also yield the exact distribution of the waiting time for the mth occurrence of a specific run.</abstract><cop>Alexandria, VA</cop><pub>Taylor & Francis Group</pub><doi>10.1080/01621459.1994.10476841</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-1459 |
ispartof | Journal of the American Statistical Association, 1994-09, Vol.89 (427), p.1050-1058 |
issn | 0162-1459 1537-274X |
language | eng |
recordid | cdi_crossref_primary_10_1080_01621459_1994_10476841 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
subjects | Bernoulli Hypothesis Bernoulli random variables Binomial distributions Distribution theory Exact sciences and technology Markov analysis Markov chains Mathematical moments Mathematics Matrices Patterns Probabilities Probability and statistics Quality assurance Random variables Reliability Sciences and techniques of general use Statistical theories Statistics Theory and Methods Transition probabilities Transition probability matrix |
title | Distribution Theory of Runs: A Markov Chain Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A24%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distribution%20Theory%20of%20Runs:%20A%20Markov%20Chain%20Approach&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Fu,%20J.%20C.&rft.date=1994-09-01&rft.volume=89&rft.issue=427&rft.spage=1050&rft.epage=1058&rft.pages=1050-1058&rft.issn=0162-1459&rft.eissn=1537-274X&rft.coden=JSTNAL&rft_id=info:doi/10.1080/01621459.1994.10476841&rft_dat=%3Cjstor_cross%3E2290933%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=274870551&rft_id=info:pmid/&rft_jstor_id=2290933&rfr_iscdi=true |