Distribution Theory of Runs: A Markov Chain Approach

The statistics of the number of success runs in a sequence of Bernoulli trials have been used in many statistical areas. For almost a century, even in the simplest case of independent and identically distributed Bernoulli trials, the exact distributions of many run statistics still remain unknown. D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 1994-09, Vol.89 (427), p.1050-1058
Hauptverfasser: Fu, J. C., Koutras, M. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1058
container_issue 427
container_start_page 1050
container_title Journal of the American Statistical Association
container_volume 89
creator Fu, J. C.
Koutras, M. V.
description The statistics of the number of success runs in a sequence of Bernoulli trials have been used in many statistical areas. For almost a century, even in the simplest case of independent and identically distributed Bernoulli trials, the exact distributions of many run statistics still remain unknown. Departing from the traditional combinatorial approach, in this article we present a simple unified approach for the distribution theory of runs based on a finite Markov chain imbedding technique. Our results cover not only the identical Bernoulli trials, but also the nonidentical Bernoulli trials. As a byproduct, our results also yield the exact distribution of the waiting time for the mth occurrence of a specific run.
doi_str_mv 10.1080/01621459.1994.10476841
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_01621459_1994_10476841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2290933</jstor_id><sourcerecordid>2290933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-b7150cb09612d5266928c2c81291d9ca039b0f4216f104eba2a5e96c9ec632cc3</originalsourceid><addsrcrecordid>eNqFkF9LwzAUxYMoOKdfQYr42pmbtEnjW5l_YSLIBN9CmrUss2tm0ir99qZsk715Xy5cfvfccw9Cl4AngDN8g4ERSFIxASGSMEo4yxI4QiNIKY8JTz6O0WiA4oE6RWfer3AonmUjlNwZ3zpTdK2xTTRfltb1ka2it67xt1EevSj3ab-j6VKZJso3G2eVXp6jk0rVvrzY9TF6f7ifT5_i2evj8zSfxZpy0cYFhxTrAgsGZJESxgTJNNEZEAELoRWmosBVQoBVwXVZKKLSUjAtSs0o0ZqO0dVWN5z96krfypXtXBNOyvBWxnGaQoDYFtLOeu_KSm6cWSvXS8ByCEjuA5JDQHIfUFi83qkrr1VdOdVo4_-2KQVO-QG28q11h-KEYi4JEVhQGrB8i5mmsm6tfqyrF7JVfW3dXpr-4-gXKEOChQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>274870551</pqid></control><display><type>article</type><title>Distribution Theory of Runs: A Markov Chain Approach</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Fu, J. C. ; Koutras, M. V.</creator><creatorcontrib>Fu, J. C. ; Koutras, M. V.</creatorcontrib><description>The statistics of the number of success runs in a sequence of Bernoulli trials have been used in many statistical areas. For almost a century, even in the simplest case of independent and identically distributed Bernoulli trials, the exact distributions of many run statistics still remain unknown. Departing from the traditional combinatorial approach, in this article we present a simple unified approach for the distribution theory of runs based on a finite Markov chain imbedding technique. Our results cover not only the identical Bernoulli trials, but also the nonidentical Bernoulli trials. As a byproduct, our results also yield the exact distribution of the waiting time for the mth occurrence of a specific run.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.1994.10476841</identifier><identifier>CODEN: JSTNAL</identifier><language>eng</language><publisher>Alexandria, VA: Taylor &amp; Francis Group</publisher><subject>Bernoulli Hypothesis ; Bernoulli random variables ; Binomial distributions ; Distribution theory ; Exact sciences and technology ; Markov analysis ; Markov chains ; Mathematical moments ; Mathematics ; Matrices ; Patterns ; Probabilities ; Probability and statistics ; Quality assurance ; Random variables ; Reliability ; Sciences and techniques of general use ; Statistical theories ; Statistics ; Theory and Methods ; Transition probabilities ; Transition probability matrix</subject><ispartof>Journal of the American Statistical Association, 1994-09, Vol.89 (427), p.1050-1058</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1994</rights><rights>Copyright 1994 American Statistical Association</rights><rights>1995 INIST-CNRS</rights><rights>Copyright American Statistical Association Sep 1994</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-b7150cb09612d5266928c2c81291d9ca039b0f4216f104eba2a5e96c9ec632cc3</citedby><cites>FETCH-LOGICAL-c379t-b7150cb09612d5266928c2c81291d9ca039b0f4216f104eba2a5e96c9ec632cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2290933$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2290933$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3317371$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, J. C.</creatorcontrib><creatorcontrib>Koutras, M. V.</creatorcontrib><title>Distribution Theory of Runs: A Markov Chain Approach</title><title>Journal of the American Statistical Association</title><description>The statistics of the number of success runs in a sequence of Bernoulli trials have been used in many statistical areas. For almost a century, even in the simplest case of independent and identically distributed Bernoulli trials, the exact distributions of many run statistics still remain unknown. Departing from the traditional combinatorial approach, in this article we present a simple unified approach for the distribution theory of runs based on a finite Markov chain imbedding technique. Our results cover not only the identical Bernoulli trials, but also the nonidentical Bernoulli trials. As a byproduct, our results also yield the exact distribution of the waiting time for the mth occurrence of a specific run.</description><subject>Bernoulli Hypothesis</subject><subject>Bernoulli random variables</subject><subject>Binomial distributions</subject><subject>Distribution theory</subject><subject>Exact sciences and technology</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Mathematical moments</subject><subject>Mathematics</subject><subject>Matrices</subject><subject>Patterns</subject><subject>Probabilities</subject><subject>Probability and statistics</subject><subject>Quality assurance</subject><subject>Random variables</subject><subject>Reliability</subject><subject>Sciences and techniques of general use</subject><subject>Statistical theories</subject><subject>Statistics</subject><subject>Theory and Methods</subject><subject>Transition probabilities</subject><subject>Transition probability matrix</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkF9LwzAUxYMoOKdfQYr42pmbtEnjW5l_YSLIBN9CmrUss2tm0ir99qZsk715Xy5cfvfccw9Cl4AngDN8g4ERSFIxASGSMEo4yxI4QiNIKY8JTz6O0WiA4oE6RWfer3AonmUjlNwZ3zpTdK2xTTRfltb1ka2it67xt1EevSj3ab-j6VKZJso3G2eVXp6jk0rVvrzY9TF6f7ifT5_i2evj8zSfxZpy0cYFhxTrAgsGZJESxgTJNNEZEAELoRWmosBVQoBVwXVZKKLSUjAtSs0o0ZqO0dVWN5z96krfypXtXBNOyvBWxnGaQoDYFtLOeu_KSm6cWSvXS8ByCEjuA5JDQHIfUFi83qkrr1VdOdVo4_-2KQVO-QG28q11h-KEYi4JEVhQGrB8i5mmsm6tfqyrF7JVfW3dXpr-4-gXKEOChQ</recordid><startdate>19940901</startdate><enddate>19940901</enddate><creator>Fu, J. C.</creator><creator>Koutras, M. V.</creator><general>Taylor &amp; Francis Group</general><general>American Statistical Association</general><general>Taylor &amp; Francis Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8BJ</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>K9-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0R</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>19940901</creationdate><title>Distribution Theory of Runs: A Markov Chain Approach</title><author>Fu, J. C. ; Koutras, M. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-b7150cb09612d5266928c2c81291d9ca039b0f4216f104eba2a5e96c9ec632cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Bernoulli Hypothesis</topic><topic>Bernoulli random variables</topic><topic>Binomial distributions</topic><topic>Distribution theory</topic><topic>Exact sciences and technology</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Mathematical moments</topic><topic>Mathematics</topic><topic>Matrices</topic><topic>Patterns</topic><topic>Probabilities</topic><topic>Probability and statistics</topic><topic>Quality assurance</topic><topic>Random variables</topic><topic>Reliability</topic><topic>Sciences and techniques of general use</topic><topic>Statistical theories</topic><topic>Statistics</topic><topic>Theory and Methods</topic><topic>Transition probabilities</topic><topic>Transition probability matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, J. C.</creatorcontrib><creatorcontrib>Koutras, M. V.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, J. C.</au><au>Koutras, M. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distribution Theory of Runs: A Markov Chain Approach</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>1994-09-01</date><risdate>1994</risdate><volume>89</volume><issue>427</issue><spage>1050</spage><epage>1058</epage><pages>1050-1058</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><coden>JSTNAL</coden><abstract>The statistics of the number of success runs in a sequence of Bernoulli trials have been used in many statistical areas. For almost a century, even in the simplest case of independent and identically distributed Bernoulli trials, the exact distributions of many run statistics still remain unknown. Departing from the traditional combinatorial approach, in this article we present a simple unified approach for the distribution theory of runs based on a finite Markov chain imbedding technique. Our results cover not only the identical Bernoulli trials, but also the nonidentical Bernoulli trials. As a byproduct, our results also yield the exact distribution of the waiting time for the mth occurrence of a specific run.</abstract><cop>Alexandria, VA</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/01621459.1994.10476841</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0162-1459
ispartof Journal of the American Statistical Association, 1994-09, Vol.89 (427), p.1050-1058
issn 0162-1459
1537-274X
language eng
recordid cdi_crossref_primary_10_1080_01621459_1994_10476841
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Bernoulli Hypothesis
Bernoulli random variables
Binomial distributions
Distribution theory
Exact sciences and technology
Markov analysis
Markov chains
Mathematical moments
Mathematics
Matrices
Patterns
Probabilities
Probability and statistics
Quality assurance
Random variables
Reliability
Sciences and techniques of general use
Statistical theories
Statistics
Theory and Methods
Transition probabilities
Transition probability matrix
title Distribution Theory of Runs: A Markov Chain Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A24%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distribution%20Theory%20of%20Runs:%20A%20Markov%20Chain%20Approach&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Fu,%20J.%20C.&rft.date=1994-09-01&rft.volume=89&rft.issue=427&rft.spage=1050&rft.epage=1058&rft.pages=1050-1058&rft.issn=0162-1459&rft.eissn=1537-274X&rft.coden=JSTNAL&rft_id=info:doi/10.1080/01621459.1994.10476841&rft_dat=%3Cjstor_cross%3E2290933%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=274870551&rft_id=info:pmid/&rft_jstor_id=2290933&rfr_iscdi=true