Stochastic Bifurcation Processes and Distributions of Fractions
The stochastic bifurcation process, which partitions a unit into its positive fractions z 1 , ..., Z I ; such that z 1 , + ... + z I , = 1, is characterized by a topology and probability law governing the (I - 1) bifurcations. Aside from describing many natural phenomena, such as flows in dendritic...
Gespeichert in:
Veröffentlicht in: | Journal of the American Statistical Association 1993-03, Vol.88 (421), p.345-354 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 354 |
---|---|
container_issue | 421 |
container_start_page | 345 |
container_title | Journal of the American Statistical Association |
container_volume | 88 |
creator | Krzysztofowicz, Roman Reese, Sharon |
description | The stochastic bifurcation process, which partitions a unit into its positive fractions z
1
, ..., Z
I
; such that z
1
, + ... + z
I
, = 1, is characterized by a topology and probability law governing the (I - 1) bifurcations. Aside from describing many natural phenomena, such as flows in dendritic networks, the stochastic bifurcation process also offers a device for generating families of multivariate distributions on the (I - 1)-dimensional simplex. In particular, the process with independent bifurcations governed by beta laws gives rise to the generalized Dirichlet family. Every member of this family is identified by the three-tuple: (1) the bifurcation topology, (2) the permutation of fractions, and (3) the parameters of the beta laws. Successively smaller subsets of bifurcation topologies, containing all possible topologies, only double-cascaded topologies, and only cascaded topologies, lead to progressively narrower distribution families of Types A, B, and C. Type C is the Connor-Mosimann distribution, which generalizes the Standard Dirichlet distribution, whose place in the hierarchy of our models makes it Type D. The Type A distribution family constitutes the ultimate generalization of the Standard Dirichlet. Because each bifurcation topology leads to a different sign structure of the correlation matrix for fractions, Type A distribution allows one to adapt its form to an empirical correlation structure by optimizing the bifurcation topology and the permutation of fractions. |
doi_str_mv | 10.1080/01621459.1993.10594327 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_01621459_1993_10594327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2290730</jstor_id><sourcerecordid>2290730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2163-9c5bb6aaaf9c58720ad24a4ed7cc67e1d2c6b745497cef8308eed1723e55ce993</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKtfQfbgdWv-bjYnqdWqUFBQwVuYzSaYst2UZIv027trrXpzLplJfu8xeQidEzwhuMSXmBSUcKEmRCnWXwnFGZUHaEQEkzmV_O0QjQYoH6hjdJLSEvcly3KErp67YN4hdd5k195tooHOhzZ7isHYlGzKoK2zG5-66KvN8JSy4LJ5BPM1nKIjB02yZ9_nGL3Ob19m9_ni8e5hNl3khpKC5cqIqioAwPVdKSmGmnLgtpbGFNKSmpqiklxwJY11JcOltTWRlFkhjO3_NUbFztfEkFK0Tq-jX0HcaoL1EIPex6CHGPQ-hl54sROuIRloXITW-PSj5pJTIdgvtkxdiH_NKcNSU6qwZLjHpjvMty7EFXyE2NS6g20T4t6a_bPRJ7CofV0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stochastic Bifurcation Processes and Distributions of Fractions</title><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><creator>Krzysztofowicz, Roman ; Reese, Sharon</creator><creatorcontrib>Krzysztofowicz, Roman ; Reese, Sharon</creatorcontrib><description>The stochastic bifurcation process, which partitions a unit into its positive fractions z
1
, ..., Z
I
; such that z
1
, + ... + z
I
, = 1, is characterized by a topology and probability law governing the (I - 1) bifurcations. Aside from describing many natural phenomena, such as flows in dendritic networks, the stochastic bifurcation process also offers a device for generating families of multivariate distributions on the (I - 1)-dimensional simplex. In particular, the process with independent bifurcations governed by beta laws gives rise to the generalized Dirichlet family. Every member of this family is identified by the three-tuple: (1) the bifurcation topology, (2) the permutation of fractions, and (3) the parameters of the beta laws. Successively smaller subsets of bifurcation topologies, containing all possible topologies, only double-cascaded topologies, and only cascaded topologies, lead to progressively narrower distribution families of Types A, B, and C. Type C is the Connor-Mosimann distribution, which generalizes the Standard Dirichlet distribution, whose place in the hierarchy of our models makes it Type D. The Type A distribution family constitutes the ultimate generalization of the Standard Dirichlet. Because each bifurcation topology leads to a different sign structure of the correlation matrix for fractions, Type A distribution allows one to adapt its form to an empirical correlation structure by optimizing the bifurcation topology and the permutation of fractions.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.1993.10594327</identifier><identifier>CODEN: JSTNAL</identifier><language>eng</language><publisher>Alexandria, VA: Taylor & Francis Group</publisher><subject>Bifurcation process ; Cardinality ; Computer networking ; Correlations ; Dendritic network ; Dirichlet distribution ; Exact sciences and technology ; Fraction ; Fractions ; Markov processes ; Mathematical vectors ; Mathematics ; Partition ; Probability and statistics ; Probability theory and stochastic processes ; Sciences and techniques of general use ; Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications) ; Stochastic models ; Theory and Methods ; Topological regularity ; Topological vector spaces ; Topology</subject><ispartof>Journal of the American Statistical Association, 1993-03, Vol.88 (421), p.345-354</ispartof><rights>Copyright Taylor & Francis Group, LLC 1993</rights><rights>Copyright 1993 American Statistical Association</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2163-9c5bb6aaaf9c58720ad24a4ed7cc67e1d2c6b745497cef8308eed1723e55ce993</citedby><cites>FETCH-LOGICAL-c2163-9c5bb6aaaf9c58720ad24a4ed7cc67e1d2c6b745497cef8308eed1723e55ce993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2290730$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2290730$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27915,27916,58008,58012,58241,58245</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4742553$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Krzysztofowicz, Roman</creatorcontrib><creatorcontrib>Reese, Sharon</creatorcontrib><title>Stochastic Bifurcation Processes and Distributions of Fractions</title><title>Journal of the American Statistical Association</title><description>The stochastic bifurcation process, which partitions a unit into its positive fractions z
1
, ..., Z
I
; such that z
1
, + ... + z
I
, = 1, is characterized by a topology and probability law governing the (I - 1) bifurcations. Aside from describing many natural phenomena, such as flows in dendritic networks, the stochastic bifurcation process also offers a device for generating families of multivariate distributions on the (I - 1)-dimensional simplex. In particular, the process with independent bifurcations governed by beta laws gives rise to the generalized Dirichlet family. Every member of this family is identified by the three-tuple: (1) the bifurcation topology, (2) the permutation of fractions, and (3) the parameters of the beta laws. Successively smaller subsets of bifurcation topologies, containing all possible topologies, only double-cascaded topologies, and only cascaded topologies, lead to progressively narrower distribution families of Types A, B, and C. Type C is the Connor-Mosimann distribution, which generalizes the Standard Dirichlet distribution, whose place in the hierarchy of our models makes it Type D. The Type A distribution family constitutes the ultimate generalization of the Standard Dirichlet. Because each bifurcation topology leads to a different sign structure of the correlation matrix for fractions, Type A distribution allows one to adapt its form to an empirical correlation structure by optimizing the bifurcation topology and the permutation of fractions.</description><subject>Bifurcation process</subject><subject>Cardinality</subject><subject>Computer networking</subject><subject>Correlations</subject><subject>Dendritic network</subject><subject>Dirichlet distribution</subject><subject>Exact sciences and technology</subject><subject>Fraction</subject><subject>Fractions</subject><subject>Markov processes</subject><subject>Mathematical vectors</subject><subject>Mathematics</subject><subject>Partition</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Sciences and techniques of general use</subject><subject>Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)</subject><subject>Stochastic models</subject><subject>Theory and Methods</subject><subject>Topological regularity</subject><subject>Topological vector spaces</subject><subject>Topology</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKtfQfbgdWv-bjYnqdWqUFBQwVuYzSaYst2UZIv027trrXpzLplJfu8xeQidEzwhuMSXmBSUcKEmRCnWXwnFGZUHaEQEkzmV_O0QjQYoH6hjdJLSEvcly3KErp67YN4hdd5k195tooHOhzZ7isHYlGzKoK2zG5-66KvN8JSy4LJ5BPM1nKIjB02yZ9_nGL3Ob19m9_ni8e5hNl3khpKC5cqIqioAwPVdKSmGmnLgtpbGFNKSmpqiklxwJY11JcOltTWRlFkhjO3_NUbFztfEkFK0Tq-jX0HcaoL1EIPex6CHGPQ-hl54sROuIRloXITW-PSj5pJTIdgvtkxdiH_NKcNSU6qwZLjHpjvMty7EFXyE2NS6g20T4t6a_bPRJ7CofV0</recordid><startdate>19930301</startdate><enddate>19930301</enddate><creator>Krzysztofowicz, Roman</creator><creator>Reese, Sharon</creator><general>Taylor & Francis Group</general><general>American Statistical Association</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19930301</creationdate><title>Stochastic Bifurcation Processes and Distributions of Fractions</title><author>Krzysztofowicz, Roman ; Reese, Sharon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2163-9c5bb6aaaf9c58720ad24a4ed7cc67e1d2c6b745497cef8308eed1723e55ce993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Bifurcation process</topic><topic>Cardinality</topic><topic>Computer networking</topic><topic>Correlations</topic><topic>Dendritic network</topic><topic>Dirichlet distribution</topic><topic>Exact sciences and technology</topic><topic>Fraction</topic><topic>Fractions</topic><topic>Markov processes</topic><topic>Mathematical vectors</topic><topic>Mathematics</topic><topic>Partition</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Sciences and techniques of general use</topic><topic>Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)</topic><topic>Stochastic models</topic><topic>Theory and Methods</topic><topic>Topological regularity</topic><topic>Topological vector spaces</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krzysztofowicz, Roman</creatorcontrib><creatorcontrib>Reese, Sharon</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krzysztofowicz, Roman</au><au>Reese, Sharon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic Bifurcation Processes and Distributions of Fractions</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>1993-03-01</date><risdate>1993</risdate><volume>88</volume><issue>421</issue><spage>345</spage><epage>354</epage><pages>345-354</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><coden>JSTNAL</coden><abstract>The stochastic bifurcation process, which partitions a unit into its positive fractions z
1
, ..., Z
I
; such that z
1
, + ... + z
I
, = 1, is characterized by a topology and probability law governing the (I - 1) bifurcations. Aside from describing many natural phenomena, such as flows in dendritic networks, the stochastic bifurcation process also offers a device for generating families of multivariate distributions on the (I - 1)-dimensional simplex. In particular, the process with independent bifurcations governed by beta laws gives rise to the generalized Dirichlet family. Every member of this family is identified by the three-tuple: (1) the bifurcation topology, (2) the permutation of fractions, and (3) the parameters of the beta laws. Successively smaller subsets of bifurcation topologies, containing all possible topologies, only double-cascaded topologies, and only cascaded topologies, lead to progressively narrower distribution families of Types A, B, and C. Type C is the Connor-Mosimann distribution, which generalizes the Standard Dirichlet distribution, whose place in the hierarchy of our models makes it Type D. The Type A distribution family constitutes the ultimate generalization of the Standard Dirichlet. Because each bifurcation topology leads to a different sign structure of the correlation matrix for fractions, Type A distribution allows one to adapt its form to an empirical correlation structure by optimizing the bifurcation topology and the permutation of fractions.</abstract><cop>Alexandria, VA</cop><pub>Taylor & Francis Group</pub><doi>10.1080/01621459.1993.10594327</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-1459 |
ispartof | Journal of the American Statistical Association, 1993-03, Vol.88 (421), p.345-354 |
issn | 0162-1459 1537-274X |
language | eng |
recordid | cdi_crossref_primary_10_1080_01621459_1993_10594327 |
source | JSTOR Mathematics & Statistics; Jstor Complete Legacy |
subjects | Bifurcation process Cardinality Computer networking Correlations Dendritic network Dirichlet distribution Exact sciences and technology Fraction Fractions Markov processes Mathematical vectors Mathematics Partition Probability and statistics Probability theory and stochastic processes Sciences and techniques of general use Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications) Stochastic models Theory and Methods Topological regularity Topological vector spaces Topology |
title | Stochastic Bifurcation Processes and Distributions of Fractions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T07%3A08%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20Bifurcation%20Processes%20and%20Distributions%20of%20Fractions&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Krzysztofowicz,%20Roman&rft.date=1993-03-01&rft.volume=88&rft.issue=421&rft.spage=345&rft.epage=354&rft.pages=345-354&rft.issn=0162-1459&rft.eissn=1537-274X&rft.coden=JSTNAL&rft_id=info:doi/10.1080/01621459.1993.10594327&rft_dat=%3Cjstor_cross%3E2290730%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2290730&rfr_iscdi=true |