Some Angular-Linear Distributions and Related Regression Models

Parametric models are proposed for the joint distribution of bivariate random variables when one variable is directional and one is scalar. These distributions are developed on the basis of the maximum entropy principle and by the specification of the marginal distributions. The properties of these...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 1978-09, Vol.73 (363), p.602-606
Hauptverfasser: Johnson, Richard A., Wehrly, Thomas E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 606
container_issue 363
container_start_page 602
container_title Journal of the American Statistical Association
container_volume 73
creator Johnson, Richard A.
Wehrly, Thomas E.
description Parametric models are proposed for the joint distribution of bivariate random variables when one variable is directional and one is scalar. These distributions are developed on the basis of the maximum entropy principle and by the specification of the marginal distributions. The properties of these distributions and the statistical analysis of regression models based on these distributions are explored. One model is extended to several variables in a form that justifies the use of least squares for estimation of parameters, conditional on the observed angles.
doi_str_mv 10.1080/01621459.1978.10480062
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_01621459_1978_10480062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2286608</jstor_id><sourcerecordid>2286608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-fae621b135b7f477b3337a093226a92b2877c3acf83b10bc1d6c3e7785632e143</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKt_QWbhdmqSO5NkVlLqEyqCD3AXkkxSUqYTSaZI_70ZasGdd3Pg8p17DwehS4JnBAt8jQmjpKqbGWm4yKtKYMzoEZqQGnhJefV5jCYjVI7UKTpLaY3zcCEm6OYtbGwx71fbTsVy6XurYnHr0xC93g4-9KlQfVu82k4NdtRVtCnlffEcWtulc3TiVJfsxa9O0cf93fvisVy-PDwt5svSUMGG0imbQ2oCteau4lwDAFe4AUqZaqimgnMDyjgBmmBtSMsMWM5FzYBaUsEUsf1dE0NK0Tr5Ff1GxZ0kWI41yEMNcqxBHmrIxqu9cZ2GEP-6KGAuaY7HsMjYfI_53oW4Ud8hdq0c1K4L0UXVG58k_PPqB3wabxI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Some Angular-Linear Distributions and Related Regression Models</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><creator>Johnson, Richard A. ; Wehrly, Thomas E.</creator><creatorcontrib>Johnson, Richard A. ; Wehrly, Thomas E.</creatorcontrib><description>Parametric models are proposed for the joint distribution of bivariate random variables when one variable is directional and one is scalar. These distributions are developed on the basis of the maximum entropy principle and by the specification of the marginal distributions. The properties of these distributions and the statistical analysis of regression models based on these distributions are explored. One model is extended to several variables in a form that justifies the use of least squares for estimation of parameters, conditional on the observed angles.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.1978.10480062</identifier><language>eng</language><publisher>Taylor &amp; Francis Group</publisher><subject>Angular-linear distribution ; Directional data ; Entropy ; Gaussian distributions ; Least squares ; Linear regression ; Maximum likelihood estimation ; Modified Bessel functions ; Parametric models ; Regression ; Regression analysis ; Sine function ; Theory and Methods ; Trigonometric regression ; Wind direction</subject><ispartof>Journal of the American Statistical Association, 1978-09, Vol.73 (363), p.602-606</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1978</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c286t-fae621b135b7f477b3337a093226a92b2877c3acf83b10bc1d6c3e7785632e143</citedby><cites>FETCH-LOGICAL-c286t-fae621b135b7f477b3337a093226a92b2877c3acf83b10bc1d6c3e7785632e143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2286608$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2286608$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,778,782,801,830,27907,27908,58000,58004,58233,58237</link.rule.ids></links><search><creatorcontrib>Johnson, Richard A.</creatorcontrib><creatorcontrib>Wehrly, Thomas E.</creatorcontrib><title>Some Angular-Linear Distributions and Related Regression Models</title><title>Journal of the American Statistical Association</title><description>Parametric models are proposed for the joint distribution of bivariate random variables when one variable is directional and one is scalar. These distributions are developed on the basis of the maximum entropy principle and by the specification of the marginal distributions. The properties of these distributions and the statistical analysis of regression models based on these distributions are explored. One model is extended to several variables in a form that justifies the use of least squares for estimation of parameters, conditional on the observed angles.</description><subject>Angular-linear distribution</subject><subject>Directional data</subject><subject>Entropy</subject><subject>Gaussian distributions</subject><subject>Least squares</subject><subject>Linear regression</subject><subject>Maximum likelihood estimation</subject><subject>Modified Bessel functions</subject><subject>Parametric models</subject><subject>Regression</subject><subject>Regression analysis</subject><subject>Sine function</subject><subject>Theory and Methods</subject><subject>Trigonometric regression</subject><subject>Wind direction</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1978</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKt_QWbhdmqSO5NkVlLqEyqCD3AXkkxSUqYTSaZI_70ZasGdd3Pg8p17DwehS4JnBAt8jQmjpKqbGWm4yKtKYMzoEZqQGnhJefV5jCYjVI7UKTpLaY3zcCEm6OYtbGwx71fbTsVy6XurYnHr0xC93g4-9KlQfVu82k4NdtRVtCnlffEcWtulc3TiVJfsxa9O0cf93fvisVy-PDwt5svSUMGG0imbQ2oCteau4lwDAFe4AUqZaqimgnMDyjgBmmBtSMsMWM5FzYBaUsEUsf1dE0NK0Tr5Ff1GxZ0kWI41yEMNcqxBHmrIxqu9cZ2GEP-6KGAuaY7HsMjYfI_53oW4Ud8hdq0c1K4L0UXVG58k_PPqB3wabxI</recordid><startdate>19780901</startdate><enddate>19780901</enddate><creator>Johnson, Richard A.</creator><creator>Wehrly, Thomas E.</creator><general>Taylor &amp; Francis Group</general><general>American Statistical Association</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19780901</creationdate><title>Some Angular-Linear Distributions and Related Regression Models</title><author>Johnson, Richard A. ; Wehrly, Thomas E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-fae621b135b7f477b3337a093226a92b2877c3acf83b10bc1d6c3e7785632e143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1978</creationdate><topic>Angular-linear distribution</topic><topic>Directional data</topic><topic>Entropy</topic><topic>Gaussian distributions</topic><topic>Least squares</topic><topic>Linear regression</topic><topic>Maximum likelihood estimation</topic><topic>Modified Bessel functions</topic><topic>Parametric models</topic><topic>Regression</topic><topic>Regression analysis</topic><topic>Sine function</topic><topic>Theory and Methods</topic><topic>Trigonometric regression</topic><topic>Wind direction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, Richard A.</creatorcontrib><creatorcontrib>Wehrly, Thomas E.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, Richard A.</au><au>Wehrly, Thomas E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some Angular-Linear Distributions and Related Regression Models</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>1978-09-01</date><risdate>1978</risdate><volume>73</volume><issue>363</issue><spage>602</spage><epage>606</epage><pages>602-606</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><abstract>Parametric models are proposed for the joint distribution of bivariate random variables when one variable is directional and one is scalar. These distributions are developed on the basis of the maximum entropy principle and by the specification of the marginal distributions. The properties of these distributions and the statistical analysis of regression models based on these distributions are explored. One model is extended to several variables in a form that justifies the use of least squares for estimation of parameters, conditional on the observed angles.</abstract><pub>Taylor &amp; Francis Group</pub><doi>10.1080/01621459.1978.10480062</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0162-1459
ispartof Journal of the American Statistical Association, 1978-09, Vol.73 (363), p.602-606
issn 0162-1459
1537-274X
language eng
recordid cdi_crossref_primary_10_1080_01621459_1978_10480062
source JSTOR Mathematics & Statistics; Jstor Complete Legacy
subjects Angular-linear distribution
Directional data
Entropy
Gaussian distributions
Least squares
Linear regression
Maximum likelihood estimation
Modified Bessel functions
Parametric models
Regression
Regression analysis
Sine function
Theory and Methods
Trigonometric regression
Wind direction
title Some Angular-Linear Distributions and Related Regression Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A15%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20Angular-Linear%20Distributions%20and%20Related%20Regression%20Models&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Johnson,%20Richard%20A.&rft.date=1978-09-01&rft.volume=73&rft.issue=363&rft.spage=602&rft.epage=606&rft.pages=602-606&rft.issn=0162-1459&rft.eissn=1537-274X&rft_id=info:doi/10.1080/01621459.1978.10480062&rft_dat=%3Cjstor_cross%3E2286608%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2286608&rfr_iscdi=true