THERMAL STRESSES AND THERMAL EXPANSION IN A UNIFORMLY HEATED FUNCTIONALLY GRADED CYLINDER

The exact solution is derived for the problem of uniformly heating a cylinder whose elastic moduli and thermal expansion coefficient vary linearly with radius. The solution shows that the radial and tangential stresses are largest in magnitude at the center of the cylinder whereas the deviatoric str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal stresses 1999-03, Vol.22 (2), p.177-188
Hauptverfasser: ZIMMERMAN, R. W, LUTZ, M. P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 188
container_issue 2
container_start_page 177
container_title Journal of thermal stresses
container_volume 22
creator ZIMMERMAN, R. W
LUTZ, M. P
description The exact solution is derived for the problem of uniformly heating a cylinder whose elastic moduli and thermal expansion coefficient vary linearly with radius. The solution shows that the radial and tangential stresses are largest in magnitude at the center of the cylinder whereas the deviatoric stress is largest in magnitude at the outer edge of the cylinder. The effective thermal expansion coefficient is found to be essentially given by the volumetric average of the local thermal expansion coefficient, with the variation in moduli having only a small effect. In the case of a material with uniform moduli but a spatially variable thermal expansion coefficient, the effective thermal expansion coeffi cient is exactly equal to the volumetric average; this result is an extension of those derived by Levin and Schapery for n-component materials.
doi_str_mv 10.1080/014957399280959
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_014957399280959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27174631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-7d947209ad6a165d1fbc4a65873cad5ca0b9389683b55ecc2e7411cbbc6829bd3</originalsourceid><addsrcrecordid>eNqFkMFrgzAchcPYYF23864exm6uiRpjdhO1rWDtUAvtKcSo4LC1Syxb__vZtWVQGDsF3vu-R_gB8IjgC4IOHEFkUUxMSg0HUkyvwABhA-mQWMtrMDi0-qG-BXdKvUMIbccxB2CVTYNk5kZamiVBmgap5sa-dg6D5Zsbp-E81sJYc7VFHI7nySxaadPAzQJfGy9iL-trN-qzSeL6featojD2g-Qe3FS8UeXD6R2CxTjIvKkezSeh50a6sGyj00lBLWJAygubIxsXqMqFxW3sEFPwAgsOc2o61HbMHONSCKMkFkIiz4XtGDQvzCF4Pu5uZfuxK1XH1rUSZdPwTdnuFDMIIpZtoh4cHUEhW6VkWbGtrNdc7hmC7HBCdnHC3ng6TXMleFNJvhG1-tXID9dj-IjVm6qVa_7ZyqZgHd83rTw7F9Os--p67_Vfz_zrb9-JXY0V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27174631</pqid></control><display><type>article</type><title>THERMAL STRESSES AND THERMAL EXPANSION IN A UNIFORMLY HEATED FUNCTIONALLY GRADED CYLINDER</title><source>Taylor &amp; Francis Online</source><creator>ZIMMERMAN, R. W ; LUTZ, M. P</creator><creatorcontrib>ZIMMERMAN, R. W ; LUTZ, M. P</creatorcontrib><description>The exact solution is derived for the problem of uniformly heating a cylinder whose elastic moduli and thermal expansion coefficient vary linearly with radius. The solution shows that the radial and tangential stresses are largest in magnitude at the center of the cylinder whereas the deviatoric stress is largest in magnitude at the outer edge of the cylinder. The effective thermal expansion coefficient is found to be essentially given by the volumetric average of the local thermal expansion coefficient, with the variation in moduli having only a small effect. In the case of a material with uniform moduli but a spatially variable thermal expansion coefficient, the effective thermal expansion coeffi cient is exactly equal to the volumetric average; this result is an extension of those derived by Levin and Schapery for n-component materials.</description><identifier>ISSN: 0149-5739</identifier><identifier>EISSN: 1521-074X</identifier><identifier>DOI: 10.1080/014957399280959</identifier><identifier>CODEN: JTSTDA</identifier><language>eng</language><publisher>Washington, DC: Informa UK Ltd</publisher><subject>Exact sciences and technology ; Functionally Graded;Inhomogeneous;Thermal Stress ; Fundamental areas of phenomenology (including applications) ; Physics ; Solid mechanics ; Static elasticity ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics</subject><ispartof>Journal of thermal stresses, 1999-03, Vol.22 (2), p.177-188</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1999</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-7d947209ad6a165d1fbc4a65873cad5ca0b9389683b55ecc2e7411cbbc6829bd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/014957399280959$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/014957399280959$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,60436</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1728095$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>ZIMMERMAN, R. W</creatorcontrib><creatorcontrib>LUTZ, M. P</creatorcontrib><title>THERMAL STRESSES AND THERMAL EXPANSION IN A UNIFORMLY HEATED FUNCTIONALLY GRADED CYLINDER</title><title>Journal of thermal stresses</title><description>The exact solution is derived for the problem of uniformly heating a cylinder whose elastic moduli and thermal expansion coefficient vary linearly with radius. The solution shows that the radial and tangential stresses are largest in magnitude at the center of the cylinder whereas the deviatoric stress is largest in magnitude at the outer edge of the cylinder. The effective thermal expansion coefficient is found to be essentially given by the volumetric average of the local thermal expansion coefficient, with the variation in moduli having only a small effect. In the case of a material with uniform moduli but a spatially variable thermal expansion coefficient, the effective thermal expansion coeffi cient is exactly equal to the volumetric average; this result is an extension of those derived by Levin and Schapery for n-component materials.</description><subject>Exact sciences and technology</subject><subject>Functionally Graded;Inhomogeneous;Thermal Stress</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Static elasticity</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><issn>0149-5739</issn><issn>1521-074X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkMFrgzAchcPYYF23864exm6uiRpjdhO1rWDtUAvtKcSo4LC1Syxb__vZtWVQGDsF3vu-R_gB8IjgC4IOHEFkUUxMSg0HUkyvwABhA-mQWMtrMDi0-qG-BXdKvUMIbccxB2CVTYNk5kZamiVBmgap5sa-dg6D5Zsbp-E81sJYc7VFHI7nySxaadPAzQJfGy9iL-trN-qzSeL6featojD2g-Qe3FS8UeXD6R2CxTjIvKkezSeh50a6sGyj00lBLWJAygubIxsXqMqFxW3sEFPwAgsOc2o61HbMHONSCKMkFkIiz4XtGDQvzCF4Pu5uZfuxK1XH1rUSZdPwTdnuFDMIIpZtoh4cHUEhW6VkWbGtrNdc7hmC7HBCdnHC3ng6TXMleFNJvhG1-tXID9dj-IjVm6qVa_7ZyqZgHd83rTw7F9Os--p67_Vfz_zrb9-JXY0V</recordid><startdate>19990301</startdate><enddate>19990301</enddate><creator>ZIMMERMAN, R. W</creator><creator>LUTZ, M. P</creator><general>Informa UK Ltd</general><general>Taylor &amp; Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>19990301</creationdate><title>THERMAL STRESSES AND THERMAL EXPANSION IN A UNIFORMLY HEATED FUNCTIONALLY GRADED CYLINDER</title><author>ZIMMERMAN, R. W ; LUTZ, M. P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-7d947209ad6a165d1fbc4a65873cad5ca0b9389683b55ecc2e7411cbbc6829bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Exact sciences and technology</topic><topic>Functionally Graded;Inhomogeneous;Thermal Stress</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Static elasticity</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZIMMERMAN, R. W</creatorcontrib><creatorcontrib>LUTZ, M. P</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of thermal stresses</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZIMMERMAN, R. W</au><au>LUTZ, M. P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THERMAL STRESSES AND THERMAL EXPANSION IN A UNIFORMLY HEATED FUNCTIONALLY GRADED CYLINDER</atitle><jtitle>Journal of thermal stresses</jtitle><date>1999-03-01</date><risdate>1999</risdate><volume>22</volume><issue>2</issue><spage>177</spage><epage>188</epage><pages>177-188</pages><issn>0149-5739</issn><eissn>1521-074X</eissn><coden>JTSTDA</coden><abstract>The exact solution is derived for the problem of uniformly heating a cylinder whose elastic moduli and thermal expansion coefficient vary linearly with radius. The solution shows that the radial and tangential stresses are largest in magnitude at the center of the cylinder whereas the deviatoric stress is largest in magnitude at the outer edge of the cylinder. The effective thermal expansion coefficient is found to be essentially given by the volumetric average of the local thermal expansion coefficient, with the variation in moduli having only a small effect. In the case of a material with uniform moduli but a spatially variable thermal expansion coefficient, the effective thermal expansion coeffi cient is exactly equal to the volumetric average; this result is an extension of those derived by Levin and Schapery for n-component materials.</abstract><cop>Washington, DC</cop><pub>Informa UK Ltd</pub><doi>10.1080/014957399280959</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0149-5739
ispartof Journal of thermal stresses, 1999-03, Vol.22 (2), p.177-188
issn 0149-5739
1521-074X
language eng
recordid cdi_crossref_primary_10_1080_014957399280959
source Taylor & Francis Online
subjects Exact sciences and technology
Functionally Graded
Inhomogeneous
Thermal Stress
Fundamental areas of phenomenology (including applications)
Physics
Solid mechanics
Static elasticity
Static elasticity (thermoelasticity...)
Structural and continuum mechanics
title THERMAL STRESSES AND THERMAL EXPANSION IN A UNIFORMLY HEATED FUNCTIONALLY GRADED CYLINDER
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A48%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THERMAL%20STRESSES%20AND%20THERMAL%20EXPANSION%20IN%20A%20UNIFORMLY%20HEATED%20FUNCTIONALLY%20GRADED%20CYLINDER&rft.jtitle=Journal%20of%20thermal%20stresses&rft.au=ZIMMERMAN,%20R.%20W&rft.date=1999-03-01&rft.volume=22&rft.issue=2&rft.spage=177&rft.epage=188&rft.pages=177-188&rft.issn=0149-5739&rft.eissn=1521-074X&rft.coden=JTSTDA&rft_id=info:doi/10.1080/014957399280959&rft_dat=%3Cproquest_cross%3E27174631%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27174631&rft_id=info:pmid/&rfr_iscdi=true