Molecular Interactions on Polystyrene Stationary Phases
The strength of the interactions between individual molecules and solvent-swollen polystyrene gels can be correlated using Lewis acid-Lewis base arguments. Polystyrene may be viewed as a Lewis base because it may serve as an electron-pair donor to a suitable electron-pair acceptor. Mobile phases suc...
Gespeichert in:
Veröffentlicht in: | Journal of liquid chromatography 1987-05, Vol.10 (7), p.1369-1382 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1382 |
---|---|
container_issue | 7 |
container_start_page | 1369 |
container_title | Journal of liquid chromatography |
container_volume | 10 |
creator | Bicking, Merlin K. L. Serwon, Stanley J. |
description | The strength of the interactions between individual molecules and solvent-swollen polystyrene gels can be correlated using Lewis acid-Lewis base arguments. Polystyrene may be viewed as a Lewis base because it may serve as an electron-pair donor to a suitable electron-pair acceptor. Mobile phases such as toluene and tetrahydrofuran (THF) are also Lewis bases. The stationary phase gel and mobile phases such as toluene and THF will compete for a Lewis acid solute, with the stronger base always interacting preferentially. For a THF mobile phase, acidic solute-mobile phase interactions predominate and size exclusion chromatography (SEC) will be the only separation mechanism occurring. Polystyrene appears to be a stronger base than toluene, and acidic solutes always interact with the gel. Retention in this system includes contributions from both SEC and gel-solute interactions. Chloroform is a Lewis acid and will interact strongly with polystyrene. Acidic solute-gel interaction must then be stronger than the chloroform-gel interaction for non-SEC retention to occur. The relative strength of the Hydrogen-bonding interactions can be predicted using Drago's E and C constants. Dipole-dipole interactions can be estimated using simple solubility parameter theory. This approach unifies experimental data reported earlier and allows a qualitative prediction of the performance of other SEC mobile phases. |
doi_str_mv | 10.1080/01483918708066774 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_01483918708066774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>7592329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-9fb547aed0250d5993d66df696a50dd9a537da5a016e736820fb040bfe89747c3</originalsourceid><addsrcrecordid>eNp1T01LxDAQDaJgWfcHeOvBazVpvhrwIosfCysuqOcyzQdWss2SVKT_3ixVL-Jchjfz3rx5CJ0TfElwg68wYQ1VpJEZCCElO0JFTSmpMCP0GBWHfZUJ6hQtU3rHuTiTTDQFko_BW_3hIZbrYbQR9NiHIZVhKLfBT2mcoh1s-TzCYQ5xKrdvkGw6QycOfLLL775Ar3e3L6uHavN0v17dbCpNaz5WynXZCazBNceGK0WNEMYJJSBjo4BTaYADJsJKKpoauw4z3DnbKMmkpgtE5rs6hpSide0-9rv8R0twewjf_gmfNRezZg9Jg3cRBt2nX6Hkqqa1yrTrmdYPLsQdfIboTTvC5EP80dD_Xb4A6zxrbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molecular Interactions on Polystyrene Stationary Phases</title><source>Taylor & Francis:Master (3349 titles)</source><creator>Bicking, Merlin K. L. ; Serwon, Stanley J.</creator><creatorcontrib>Bicking, Merlin K. L. ; Serwon, Stanley J.</creatorcontrib><description>The strength of the interactions between individual molecules and solvent-swollen polystyrene gels can be correlated using Lewis acid-Lewis base arguments. Polystyrene may be viewed as a Lewis base because it may serve as an electron-pair donor to a suitable electron-pair acceptor. Mobile phases such as toluene and tetrahydrofuran (THF) are also Lewis bases. The stationary phase gel and mobile phases such as toluene and THF will compete for a Lewis acid solute, with the stronger base always interacting preferentially. For a THF mobile phase, acidic solute-mobile phase interactions predominate and size exclusion chromatography (SEC) will be the only separation mechanism occurring. Polystyrene appears to be a stronger base than toluene, and acidic solutes always interact with the gel. Retention in this system includes contributions from both SEC and gel-solute interactions. Chloroform is a Lewis acid and will interact strongly with polystyrene. Acidic solute-gel interaction must then be stronger than the chloroform-gel interaction for non-SEC retention to occur. The relative strength of the Hydrogen-bonding interactions can be predicted using Drago's E and C constants. Dipole-dipole interactions can be estimated using simple solubility parameter theory. This approach unifies experimental data reported earlier and allows a qualitative prediction of the performance of other SEC mobile phases.</description><identifier>ISSN: 0148-3919</identifier><identifier>EISSN: 2331-0413</identifier><identifier>DOI: 10.1080/01483918708066774</identifier><identifier>CODEN: JLCHD8</identifier><language>eng</language><publisher>New York, NY: Taylor & Francis Group</publisher><subject>Analytical chemistry ; Chemistry ; Chromatographic methods and physical methods associated with chromatography ; Exact sciences and technology ; Other chromatographic methods</subject><ispartof>Journal of liquid chromatography, 1987-05, Vol.10 (7), p.1369-1382</ispartof><rights>Copyright Taylor & Francis Group, LLC 1987</rights><rights>1988 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-9fb547aed0250d5993d66df696a50dd9a537da5a016e736820fb040bfe89747c3</citedby><cites>FETCH-LOGICAL-c325t-9fb547aed0250d5993d66df696a50dd9a537da5a016e736820fb040bfe89747c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/01483918708066774$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/01483918708066774$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,60436</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7592329$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bicking, Merlin K. L.</creatorcontrib><creatorcontrib>Serwon, Stanley J.</creatorcontrib><title>Molecular Interactions on Polystyrene Stationary Phases</title><title>Journal of liquid chromatography</title><description>The strength of the interactions between individual molecules and solvent-swollen polystyrene gels can be correlated using Lewis acid-Lewis base arguments. Polystyrene may be viewed as a Lewis base because it may serve as an electron-pair donor to a suitable electron-pair acceptor. Mobile phases such as toluene and tetrahydrofuran (THF) are also Lewis bases. The stationary phase gel and mobile phases such as toluene and THF will compete for a Lewis acid solute, with the stronger base always interacting preferentially. For a THF mobile phase, acidic solute-mobile phase interactions predominate and size exclusion chromatography (SEC) will be the only separation mechanism occurring. Polystyrene appears to be a stronger base than toluene, and acidic solutes always interact with the gel. Retention in this system includes contributions from both SEC and gel-solute interactions. Chloroform is a Lewis acid and will interact strongly with polystyrene. Acidic solute-gel interaction must then be stronger than the chloroform-gel interaction for non-SEC retention to occur. The relative strength of the Hydrogen-bonding interactions can be predicted using Drago's E and C constants. Dipole-dipole interactions can be estimated using simple solubility parameter theory. This approach unifies experimental data reported earlier and allows a qualitative prediction of the performance of other SEC mobile phases.</description><subject>Analytical chemistry</subject><subject>Chemistry</subject><subject>Chromatographic methods and physical methods associated with chromatography</subject><subject>Exact sciences and technology</subject><subject>Other chromatographic methods</subject><issn>0148-3919</issn><issn>2331-0413</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNp1T01LxDAQDaJgWfcHeOvBazVpvhrwIosfCysuqOcyzQdWss2SVKT_3ixVL-Jchjfz3rx5CJ0TfElwg68wYQ1VpJEZCCElO0JFTSmpMCP0GBWHfZUJ6hQtU3rHuTiTTDQFko_BW_3hIZbrYbQR9NiHIZVhKLfBT2mcoh1s-TzCYQ5xKrdvkGw6QycOfLLL775Ar3e3L6uHavN0v17dbCpNaz5WynXZCazBNceGK0WNEMYJJSBjo4BTaYADJsJKKpoauw4z3DnbKMmkpgtE5rs6hpSide0-9rv8R0twewjf_gmfNRezZg9Jg3cRBt2nX6Hkqqa1yrTrmdYPLsQdfIboTTvC5EP80dD_Xb4A6zxrbg</recordid><startdate>19870501</startdate><enddate>19870501</enddate><creator>Bicking, Merlin K. L.</creator><creator>Serwon, Stanley J.</creator><general>Taylor & Francis Group</general><general>Dekker</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19870501</creationdate><title>Molecular Interactions on Polystyrene Stationary Phases</title><author>Bicking, Merlin K. L. ; Serwon, Stanley J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-9fb547aed0250d5993d66df696a50dd9a537da5a016e736820fb040bfe89747c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Analytical chemistry</topic><topic>Chemistry</topic><topic>Chromatographic methods and physical methods associated with chromatography</topic><topic>Exact sciences and technology</topic><topic>Other chromatographic methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Bicking, Merlin K. L.</creatorcontrib><creatorcontrib>Serwon, Stanley J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of liquid chromatography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bicking, Merlin K. L.</au><au>Serwon, Stanley J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Interactions on Polystyrene Stationary Phases</atitle><jtitle>Journal of liquid chromatography</jtitle><date>1987-05-01</date><risdate>1987</risdate><volume>10</volume><issue>7</issue><spage>1369</spage><epage>1382</epage><pages>1369-1382</pages><issn>0148-3919</issn><eissn>2331-0413</eissn><coden>JLCHD8</coden><abstract>The strength of the interactions between individual molecules and solvent-swollen polystyrene gels can be correlated using Lewis acid-Lewis base arguments. Polystyrene may be viewed as a Lewis base because it may serve as an electron-pair donor to a suitable electron-pair acceptor. Mobile phases such as toluene and tetrahydrofuran (THF) are also Lewis bases. The stationary phase gel and mobile phases such as toluene and THF will compete for a Lewis acid solute, with the stronger base always interacting preferentially. For a THF mobile phase, acidic solute-mobile phase interactions predominate and size exclusion chromatography (SEC) will be the only separation mechanism occurring. Polystyrene appears to be a stronger base than toluene, and acidic solutes always interact with the gel. Retention in this system includes contributions from both SEC and gel-solute interactions. Chloroform is a Lewis acid and will interact strongly with polystyrene. Acidic solute-gel interaction must then be stronger than the chloroform-gel interaction for non-SEC retention to occur. The relative strength of the Hydrogen-bonding interactions can be predicted using Drago's E and C constants. Dipole-dipole interactions can be estimated using simple solubility parameter theory. This approach unifies experimental data reported earlier and allows a qualitative prediction of the performance of other SEC mobile phases.</abstract><cop>New York, NY</cop><pub>Taylor & Francis Group</pub><doi>10.1080/01483918708066774</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-3919 |
ispartof | Journal of liquid chromatography, 1987-05, Vol.10 (7), p.1369-1382 |
issn | 0148-3919 2331-0413 |
language | eng |
recordid | cdi_crossref_primary_10_1080_01483918708066774 |
source | Taylor & Francis:Master (3349 titles) |
subjects | Analytical chemistry Chemistry Chromatographic methods and physical methods associated with chromatography Exact sciences and technology Other chromatographic methods |
title | Molecular Interactions on Polystyrene Stationary Phases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T10%3A38%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Interactions%20on%20Polystyrene%20Stationary%20Phases&rft.jtitle=Journal%20of%20liquid%20chromatography&rft.au=Bicking,%20Merlin%20K.%20L.&rft.date=1987-05-01&rft.volume=10&rft.issue=7&rft.spage=1369&rft.epage=1382&rft.pages=1369-1382&rft.issn=0148-3919&rft.eissn=2331-0413&rft.coden=JLCHD8&rft_id=info:doi/10.1080/01483918708066774&rft_dat=%3Cpascalfrancis_cross%3E7592329%3C/pascalfrancis_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |