Molecular Interactions on Polystyrene Stationary Phases

The strength of the interactions between individual molecules and solvent-swollen polystyrene gels can be correlated using Lewis acid-Lewis base arguments. Polystyrene may be viewed as a Lewis base because it may serve as an electron-pair donor to a suitable electron-pair acceptor. Mobile phases suc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of liquid chromatography 1987-05, Vol.10 (7), p.1369-1382
Hauptverfasser: Bicking, Merlin K. L., Serwon, Stanley J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1382
container_issue 7
container_start_page 1369
container_title Journal of liquid chromatography
container_volume 10
creator Bicking, Merlin K. L.
Serwon, Stanley J.
description The strength of the interactions between individual molecules and solvent-swollen polystyrene gels can be correlated using Lewis acid-Lewis base arguments. Polystyrene may be viewed as a Lewis base because it may serve as an electron-pair donor to a suitable electron-pair acceptor. Mobile phases such as toluene and tetrahydrofuran (THF) are also Lewis bases. The stationary phase gel and mobile phases such as toluene and THF will compete for a Lewis acid solute, with the stronger base always interacting preferentially. For a THF mobile phase, acidic solute-mobile phase interactions predominate and size exclusion chromatography (SEC) will be the only separation mechanism occurring. Polystyrene appears to be a stronger base than toluene, and acidic solutes always interact with the gel. Retention in this system includes contributions from both SEC and gel-solute interactions. Chloroform is a Lewis acid and will interact strongly with polystyrene. Acidic solute-gel interaction must then be stronger than the chloroform-gel interaction for non-SEC retention to occur. The relative strength of the Hydrogen-bonding interactions can be predicted using Drago's E and C constants. Dipole-dipole interactions can be estimated using simple solubility parameter theory. This approach unifies experimental data reported earlier and allows a qualitative prediction of the performance of other SEC mobile phases.
doi_str_mv 10.1080/01483918708066774
format Article
fullrecord <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_01483918708066774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>7592329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-9fb547aed0250d5993d66df696a50dd9a537da5a016e736820fb040bfe89747c3</originalsourceid><addsrcrecordid>eNp1T01LxDAQDaJgWfcHeOvBazVpvhrwIosfCysuqOcyzQdWss2SVKT_3ixVL-Jchjfz3rx5CJ0TfElwg68wYQ1VpJEZCCElO0JFTSmpMCP0GBWHfZUJ6hQtU3rHuTiTTDQFko_BW_3hIZbrYbQR9NiHIZVhKLfBT2mcoh1s-TzCYQ5xKrdvkGw6QycOfLLL775Ar3e3L6uHavN0v17dbCpNaz5WynXZCazBNceGK0WNEMYJJSBjo4BTaYADJsJKKpoauw4z3DnbKMmkpgtE5rs6hpSide0-9rv8R0twewjf_gmfNRezZg9Jg3cRBt2nX6Hkqqa1yrTrmdYPLsQdfIboTTvC5EP80dD_Xb4A6zxrbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molecular Interactions on Polystyrene Stationary Phases</title><source>Taylor &amp; Francis:Master (3349 titles)</source><creator>Bicking, Merlin K. L. ; Serwon, Stanley J.</creator><creatorcontrib>Bicking, Merlin K. L. ; Serwon, Stanley J.</creatorcontrib><description>The strength of the interactions between individual molecules and solvent-swollen polystyrene gels can be correlated using Lewis acid-Lewis base arguments. Polystyrene may be viewed as a Lewis base because it may serve as an electron-pair donor to a suitable electron-pair acceptor. Mobile phases such as toluene and tetrahydrofuran (THF) are also Lewis bases. The stationary phase gel and mobile phases such as toluene and THF will compete for a Lewis acid solute, with the stronger base always interacting preferentially. For a THF mobile phase, acidic solute-mobile phase interactions predominate and size exclusion chromatography (SEC) will be the only separation mechanism occurring. Polystyrene appears to be a stronger base than toluene, and acidic solutes always interact with the gel. Retention in this system includes contributions from both SEC and gel-solute interactions. Chloroform is a Lewis acid and will interact strongly with polystyrene. Acidic solute-gel interaction must then be stronger than the chloroform-gel interaction for non-SEC retention to occur. The relative strength of the Hydrogen-bonding interactions can be predicted using Drago's E and C constants. Dipole-dipole interactions can be estimated using simple solubility parameter theory. This approach unifies experimental data reported earlier and allows a qualitative prediction of the performance of other SEC mobile phases.</description><identifier>ISSN: 0148-3919</identifier><identifier>EISSN: 2331-0413</identifier><identifier>DOI: 10.1080/01483918708066774</identifier><identifier>CODEN: JLCHD8</identifier><language>eng</language><publisher>New York, NY: Taylor &amp; Francis Group</publisher><subject>Analytical chemistry ; Chemistry ; Chromatographic methods and physical methods associated with chromatography ; Exact sciences and technology ; Other chromatographic methods</subject><ispartof>Journal of liquid chromatography, 1987-05, Vol.10 (7), p.1369-1382</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1987</rights><rights>1988 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-9fb547aed0250d5993d66df696a50dd9a537da5a016e736820fb040bfe89747c3</citedby><cites>FETCH-LOGICAL-c325t-9fb547aed0250d5993d66df696a50dd9a537da5a016e736820fb040bfe89747c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/01483918708066774$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/01483918708066774$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,60436</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7592329$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bicking, Merlin K. L.</creatorcontrib><creatorcontrib>Serwon, Stanley J.</creatorcontrib><title>Molecular Interactions on Polystyrene Stationary Phases</title><title>Journal of liquid chromatography</title><description>The strength of the interactions between individual molecules and solvent-swollen polystyrene gels can be correlated using Lewis acid-Lewis base arguments. Polystyrene may be viewed as a Lewis base because it may serve as an electron-pair donor to a suitable electron-pair acceptor. Mobile phases such as toluene and tetrahydrofuran (THF) are also Lewis bases. The stationary phase gel and mobile phases such as toluene and THF will compete for a Lewis acid solute, with the stronger base always interacting preferentially. For a THF mobile phase, acidic solute-mobile phase interactions predominate and size exclusion chromatography (SEC) will be the only separation mechanism occurring. Polystyrene appears to be a stronger base than toluene, and acidic solutes always interact with the gel. Retention in this system includes contributions from both SEC and gel-solute interactions. Chloroform is a Lewis acid and will interact strongly with polystyrene. Acidic solute-gel interaction must then be stronger than the chloroform-gel interaction for non-SEC retention to occur. The relative strength of the Hydrogen-bonding interactions can be predicted using Drago's E and C constants. Dipole-dipole interactions can be estimated using simple solubility parameter theory. This approach unifies experimental data reported earlier and allows a qualitative prediction of the performance of other SEC mobile phases.</description><subject>Analytical chemistry</subject><subject>Chemistry</subject><subject>Chromatographic methods and physical methods associated with chromatography</subject><subject>Exact sciences and technology</subject><subject>Other chromatographic methods</subject><issn>0148-3919</issn><issn>2331-0413</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNp1T01LxDAQDaJgWfcHeOvBazVpvhrwIosfCysuqOcyzQdWss2SVKT_3ixVL-Jchjfz3rx5CJ0TfElwg68wYQ1VpJEZCCElO0JFTSmpMCP0GBWHfZUJ6hQtU3rHuTiTTDQFko_BW_3hIZbrYbQR9NiHIZVhKLfBT2mcoh1s-TzCYQ5xKrdvkGw6QycOfLLL775Ar3e3L6uHavN0v17dbCpNaz5WynXZCazBNceGK0WNEMYJJSBjo4BTaYADJsJKKpoauw4z3DnbKMmkpgtE5rs6hpSide0-9rv8R0twewjf_gmfNRezZg9Jg3cRBt2nX6Hkqqa1yrTrmdYPLsQdfIboTTvC5EP80dD_Xb4A6zxrbg</recordid><startdate>19870501</startdate><enddate>19870501</enddate><creator>Bicking, Merlin K. L.</creator><creator>Serwon, Stanley J.</creator><general>Taylor &amp; Francis Group</general><general>Dekker</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19870501</creationdate><title>Molecular Interactions on Polystyrene Stationary Phases</title><author>Bicking, Merlin K. L. ; Serwon, Stanley J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-9fb547aed0250d5993d66df696a50dd9a537da5a016e736820fb040bfe89747c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Analytical chemistry</topic><topic>Chemistry</topic><topic>Chromatographic methods and physical methods associated with chromatography</topic><topic>Exact sciences and technology</topic><topic>Other chromatographic methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Bicking, Merlin K. L.</creatorcontrib><creatorcontrib>Serwon, Stanley J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of liquid chromatography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bicking, Merlin K. L.</au><au>Serwon, Stanley J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Interactions on Polystyrene Stationary Phases</atitle><jtitle>Journal of liquid chromatography</jtitle><date>1987-05-01</date><risdate>1987</risdate><volume>10</volume><issue>7</issue><spage>1369</spage><epage>1382</epage><pages>1369-1382</pages><issn>0148-3919</issn><eissn>2331-0413</eissn><coden>JLCHD8</coden><abstract>The strength of the interactions between individual molecules and solvent-swollen polystyrene gels can be correlated using Lewis acid-Lewis base arguments. Polystyrene may be viewed as a Lewis base because it may serve as an electron-pair donor to a suitable electron-pair acceptor. Mobile phases such as toluene and tetrahydrofuran (THF) are also Lewis bases. The stationary phase gel and mobile phases such as toluene and THF will compete for a Lewis acid solute, with the stronger base always interacting preferentially. For a THF mobile phase, acidic solute-mobile phase interactions predominate and size exclusion chromatography (SEC) will be the only separation mechanism occurring. Polystyrene appears to be a stronger base than toluene, and acidic solutes always interact with the gel. Retention in this system includes contributions from both SEC and gel-solute interactions. Chloroform is a Lewis acid and will interact strongly with polystyrene. Acidic solute-gel interaction must then be stronger than the chloroform-gel interaction for non-SEC retention to occur. The relative strength of the Hydrogen-bonding interactions can be predicted using Drago's E and C constants. Dipole-dipole interactions can be estimated using simple solubility parameter theory. This approach unifies experimental data reported earlier and allows a qualitative prediction of the performance of other SEC mobile phases.</abstract><cop>New York, NY</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/01483918708066774</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0148-3919
ispartof Journal of liquid chromatography, 1987-05, Vol.10 (7), p.1369-1382
issn 0148-3919
2331-0413
language eng
recordid cdi_crossref_primary_10_1080_01483918708066774
source Taylor & Francis:Master (3349 titles)
subjects Analytical chemistry
Chemistry
Chromatographic methods and physical methods associated with chromatography
Exact sciences and technology
Other chromatographic methods
title Molecular Interactions on Polystyrene Stationary Phases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T10%3A38%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Interactions%20on%20Polystyrene%20Stationary%20Phases&rft.jtitle=Journal%20of%20liquid%20chromatography&rft.au=Bicking,%20Merlin%20K.%20L.&rft.date=1987-05-01&rft.volume=10&rft.issue=7&rft.spage=1369&rft.epage=1382&rft.pages=1369-1382&rft.issn=0148-3919&rft.eissn=2331-0413&rft.coden=JLCHD8&rft_id=info:doi/10.1080/01483918708066774&rft_dat=%3Cpascalfrancis_cross%3E7592329%3C/pascalfrancis_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true